计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 110-118.doi: 10.11896/jsjkx.241000094
刘腾飞, 陈李越, 房江祎, 王乐业
LIU Tengfei, CHEN Liyue, FANG Jiangyi, WANG Leye
摘要: 道路信息与当前道路的流量模式息息相关,丰富的POI(Point of Interest)语义可以揭示一个地区的属性,人口数据可以揭示一个地区的人口流量趋势。在时空预测中考虑以上外部空间特征对流量带来的影响,可以帮助模型完成更精准的预测。现有的外部空间建模方法通常针对输入的外部空间特征,经过神经网络映射学得空间相关语义表示,再与最终的时空流量表示融合。然而,由于流量表示和空间特征之间具有异构性,已有的外部空间特征建模方法往往扩展性不高,只能针对特定外部空间特征或特定时空模型。为解决以上问题,提出了一种针对外部空间特征的通用建模框架SCFNet(Spatial Context Fusion Network for Traffic Forecasting)。具体而言,引入基于信息交互的注意力机制,在时空表示和外部空间特征之间计算注意力分数,从而实现外部空间特征和时空表示的高效融合;同时,设计了一种时间向量动态编码方式,以生成动态的空间特征语义。SCFNet采用模块化设计,能够与各类最新的时空流量预测网络结合。SCFNet支持区域人口数据、道路信息、POI等不同空间静态特征的混合输入。在3个真实交通数据集上进行了实验,实验结果表明,SCFNet可显著提高各类最新时空预测方法(如MTGNN,ASTGCN,GraphWaveNet)的预测精度。
中图分类号:
[1]CHEN Y,CHEN C,WU Q,et al.Spatial-temporal traffic congestion identification and correlation extraction using floating car data[J].Journal of Intelligent Transportation Systems,2021,25(3):263-280. [2]DRAGOMIR G.A spatial-temporal data model for choosing optimal multimodal routes in urban areas[C]//2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing.IEEE,2012. [3]WU L,WANG M,WU D,et al.DynSTGAT:Dynamic spatial-temporal graph attention network for traffic signal control[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021. [4]WU F,ZHU M,WANG Q,et al.Spatial-temporal visualization of city-wide crowd movement[J].Journal of Visualization,2017,20:183-194. [5]FANG S,ZHANG Q,MENG G,et al.GSTNet:Global Spatial-Temporal Network for Traffic Flow Prediction[C]//IJCAI.2019. [6]DENG D,SHAHABI C,DEMIRYUREK U,et al.Latent space model for road networks to predict time-varying traffic[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1525-1534. [7]YUAN J,ZHENG Y,XIE X.Discovering regions of differentfunctions in a city using human mobility and POIs[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2012:186-194. [8]ZHENG C,FAN X,WEN C,et al.DeepSTD:Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(9):3744-3755. [9]XIA T,LIN J,LI Y,et al.3dgcn:3-dimensional dynamic graph convolutional network for citywide crowd flow prediction[J].ACM Transactions on Knowledge Discovery from Data,2021,15(6):1-21. [10]LIN Z Q,J.FENG J,LU Z Y,et al.Deepstn+:Context-aware spatial temporal neural network for crowd flow prediction in metropolis[C]//AAAI.2019:1020-1027. [11]YUAN X M,HAN J C.WANG X,et al.A novel learning approach for citywide crowd flow prediction[C]//IEEE.2019:341-346. [12]XING J,KONG X,XING W,et al.STGs:Construct spatial and temporal graphs for citywide crowd flow prediction[J].Applied Intelligence,2022,52(11):12272-12281. [13]LI F,FENG J,YAN H,et al.Crowd flow prediction for irregular regions with semantic graph attention network[J].ACM Transactions on Intelligent Systems and Technology(TIST),2022,13(5):1-14. [14]ZENG H,PENG Z,HUANG X H,et al.Deep spatio-temporal neural network based on interactive attention for traffic flow prediction[J].Applied Intelligence,2022,15(9):1-12. [15]WANG K,LIU L B,LIU Y,et al.Urban regional functionguided traffic flow prediction[J].Information Sciences,2023,634:308-320. [16]WU Z H,PAN S R,LONG G D,et al.Graph wavenet for deep spatial-temporal graph modeling[J].arXiv:1906.00121,2019. [17]MA X,DAI Z,HE Z,et al.Learning traffic as images:A deep convolutional neural network for large-scale transportation network speed prediction[J].Sensors,2017,17(4):818. [18]JIE L,YONG F.Prediction of time series data based on multi-time scale rnn [J].Computer Applications and Software,2018,35(7):33-37. [19]LV Z,XU J,ZHENG K,et al.Lc-rnn:A deep learning model for traffic speed prediction[C]//IJCAI.2018. [20]DO L N N,VU H L,VO B Q,et al.An effective spatial-temporal attention based neural network for traffic flow prediction[J].Transportation Research Part C:Emerging Technologies,2019,108:12-28. [21]ZHU J,WANG Q,TAO C,et al.AST-GCN:Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting[J].IEEE Access,2021,9:35973-35983. [22]ZHENG C,FAN X,WANG C,et al.Gman:A graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:1234-1241. [23]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Conference on Neural Information Processing SystemsDecember.2017:6000-6010. [24]LIU X,YU H F,DHILON I,et al.Learning to encode position for transformer with continuous dynamical model[C]//International Conference on Machine Learning.PMLR,2020:6327-6335. [25]WANG K,WANG P,HUANG Z,et al.A two-step model for predicting travel demand in expanding subways[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(10):19534-19543. [26]LIANG Y,OUYANG K,SUN J,et al.Fine-grained urban flow prediction[C]//Proceedings of the Web Conference 2021.2021:1833-1845. [27]PAN Z,LIANG Y,WANG W,et al.Urban traffic prediction from spatio-temporal data using deep meta learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:1720-1730. [28]WANG L,CHAI D,LIU X,et al.Exploring the generalizability of spatio-temporal traffic prediction:Meta-modeling and an analytic framework[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(4):3870-3884. [29]WU Z,PAN S,LONG G,et al.Connecting the dots:Multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:753-763. |
|