计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241000164-7.doi: 10.11896/jsjkx.241000164
张悦超1, 安国成2, 孙琛恺2
ZHANG Yuechao1, AN Guocheng2, SUN Chenkai2
摘要: 光伏发电功率的中短期预测,不仅可以实时监测功率变化情况,还可以降低功率波动对光伏系统的冲击,然而极端天气变化和设备故障老化会导致光伏发电数据存在缺失的情况。因此,提出了一种改进ModernTCN的时间序列预测模型。该模型首先通过BiTGraph的多尺度实例模块和偏置模块,对原始数据中的缺失数据进行处理,增强输入数据的时空感受域。再通过ModernTCN的膨胀卷积,提升有效感受野(Effective Receptive Field,ERF),使得模型更好地捕获时间序列的中短期依赖性和多变量时间序列的跨变量依赖性。改进后的模型有助于在光伏发电数据少量缺失的情况下完成中短期时间序列预测,并且在3个电力相关数据集上进行了模型验证。实验结果表明,相对于BiTGraph模型和ModernTCN模型,BG-ModernTCN的均方误差指标平均降低11.9%,平均绝对误差指标降低平均降低12.8%。
中图分类号:
| [1]LI N,LIU J J,LAI X Y,et al.Ultra-short-term Multi-step Forecast of Photovoltaic Power Based on Time Series Neural Hierarchical Interpolation Model [J].Smart Power,2024,52(4):69-77. [2]MARIAM A,IMTIAZ A.Solar Power Generation ForecastingUsing Ensemble Approach Based on Deep Learning and Statistical Methods[J].Applied Computing and Informatics,2024,20(3/4):231-250. [3]WANG X G,ZHU J W,ZHANG A X.Identification Method of Voiceprint Identity Based on ARIMA Prediction of MFCC Features[J].Computer Science,2022,49(5):92-97. [4]ANDARA K,HYNDMANR J,BERGMEIR C.MSTL:a seasonaltrend decomposition algorithm for timeseries with multiple seasonal patterns [J].arXiv:2107.13462,2021. [5]ZENG Z H,LI C Y,LIAO Q.Anomaly Detection Algorithm for Multivariate Time Series with Missing Values [J].Computer Science,2024,51(7):108-115. [6]LI Y H,GUO H G,LIU P P,et al.A Cloud Platform LoadForecasting Method Based on Temporal Convolutional Networks [J].Computer Science,2023,50(7):254-260. [7]TENG C Y,DING Y C,ZHANG Y B,et al.Ultra-short-term Photovoltaic Power Prediction Based on VMD-Informer-BiLSTM Model [J].High Voltage Engineering,2023,49(7):2961-2971. [8]KONG F M,GAO L,LI P C,et al.EMD-LSTM-LB Frequency-Domain Time Series Forecasting Algorithm [J].Computer Engineering and Design,2023,44(10):3021-3030. [9]LI P C,ZHANG F,GAO L,et al.A novel model for chaoticcomplex time series with large of data forecasting[J].Knowledge-based Systems,2021,222:107009. [10]ZHAO B C,MA J J,CUI L,et al.Anomaly Detection for Photovoltaic Power Generation Based on the Improved VMD-XGBoost-BiLSTM Hybrid Model [J].Computer Engineering,2024,50(3):306-316. [11]ZHANG J L,LI Y,ZHU Q S,et al.Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer[J].Computer Science,2024,51(5):62-69. [12]MARYAM Y,NARJES A,MEISAM F,et al.Deep learning-based multistep ahead wind speed and power generation forecasting using direct method[J].Energy Conversion and Management,2023,281:116760-116760. [13]NEHLER K J,SCHULTZE M.Missing Data Handling via EM and Multiple Imputation in Network Analysis using glasso and atan Regularization[J].Multivariate Behavioral Rsearch,2025,2025:1-23. [14]GEETA C.Handling Missing Data Through Artificial NeuralNetwork[J].Communications on Applied Nonlinear Analysis,2024,31(7s):677-684. [15]CHEN X D,LI X C,LIU B,et al.Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Va-lues[C]//International Conference on Learning Representations.2024 [16]LUO D H,WANG X.ModernTCN:A Modern Pure Convolution Structure for General Time Series Analysis[C]//International Conference on Learning Representations.2024 [17]LEVA S,NESPOLI A,PRETTO S,et al,Photovoltaic power andweather parameters[EB/OL].[2023-01-12].https://dx.doi.org/10.21227/42v0-jz14. [18]LIU Y,HU T G,ZHANG H R,et al.iTransformer:InvertedTransformers Are Effective for Time Series Forecasting[C]//International Conference on Learning Representations.2023. |
|
||