计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241000164-7.doi: 10.11896/jsjkx.241000164

• 交叉&应用 • 上一篇    下一篇

基于改进ModernTCN的光伏发电中短期预测

张悦超1, 安国成2, 孙琛恺2   

  1. 1 龙源(北京)新能源工程技术有限公司 北京 100034
    2 上海华讯网络系统有限公司服务运作部 上海 201103
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 安国成(anguocheng@eccom.com.cn)
  • 作者简介:12034682@ceic.com
  • 基金资助:
    十四五国家重点研发计划资助项目(2023YFC3006700)

Prediction of Short-and-Medium Term Photovoltaic Power Generation Based on Improved ModernTCN

ZHANG Yuechao1, AN Guocheng2, SUN Chenkai2   

  1. 1 Long Yuan( Beijing ) New Energy Engineering Technology Co.,Ltd.,Beijing 100034,China
    2 Service Operations Department,Shanghai Huaxun Network System Co.,Shanghai 201103,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National Key Research and Development Program of China’s 14th Five-Year Plan Project(2023YFC3006700).

摘要: 光伏发电功率的中短期预测,不仅可以实时监测功率变化情况,还可以降低功率波动对光伏系统的冲击,然而极端天气变化和设备故障老化会导致光伏发电数据存在缺失的情况。因此,提出了一种改进ModernTCN的时间序列预测模型。该模型首先通过BiTGraph的多尺度实例模块和偏置模块,对原始数据中的缺失数据进行处理,增强输入数据的时空感受域。再通过ModernTCN的膨胀卷积,提升有效感受野(Effective Receptive Field,ERF),使得模型更好地捕获时间序列的中短期依赖性和多变量时间序列的跨变量依赖性。改进后的模型有助于在光伏发电数据少量缺失的情况下完成中短期时间序列预测,并且在3个电力相关数据集上进行了模型验证。实验结果表明,相对于BiTGraph模型和ModernTCN模型,BG-ModernTCN的均方误差指标平均降低11.9%,平均绝对误差指标降低平均降低12.8%。

关键词: 光伏功率预测, 中短期预测, 缺失数据处理, 深度学习模型, 现代时序卷积网络

Abstract: The medium- and short-term forecasting of photovoltaic(PV) power generation enables real-time monitoring of power fluctuations and reduces the impact of power volatility on PV systems.However,extreme weather changes and equipment faults or aging often lead to missing data in PV power generation records.This paper proposes an improved ModernTCN time series forecasting model to address this issue.The model firstly utilizes the multi-scale instance module and bias module of BiTGraph to handle missing data in the raw data,enhancing the spatiotemporal receptive field of the input.Then,ModernTCN’s dilated convolutions improve the ERF,allowing the model to better capture short- and medium-term dependencies in time series data as well as cross-variable dependencies in multivariate time series.The improved model supports medium- and short-term time series forecasting,even with minor data gaps in PV generation records,and is validated on three power-related datasets.Experimental results demonstrate that,compared to BiTGraph and ModernTCN models,the BG-ModernTCN model achieves an average reduction in mean squared error by 11.9% and mean absolute error by 12.8%.

Key words: Photovoltaic power forecasting, Short- and medium-term prediction, Missing data handling, Deep learning model, Modern temporal convolutional network

中图分类号: 

  • TP391
[1]LI N,LIU J J,LAI X Y,et al.Ultra-short-term Multi-step Forecast of Photovoltaic Power Based on Time Series Neural Hierarchical Interpolation Model [J].Smart Power,2024,52(4):69-77.
[2]MARIAM A,IMTIAZ A.Solar Power Generation ForecastingUsing Ensemble Approach Based on Deep Learning and Statistical Methods[J].Applied Computing and Informatics,2024,20(3/4):231-250.
[3]WANG X G,ZHU J W,ZHANG A X.Identification Method of Voiceprint Identity Based on ARIMA Prediction of MFCC Features[J].Computer Science,2022,49(5):92-97.
[4]ANDARA K,HYNDMANR J,BERGMEIR C.MSTL:a seasonaltrend decomposition algorithm for timeseries with multiple seasonal patterns [J].arXiv:2107.13462,2021.
[5]ZENG Z H,LI C Y,LIAO Q.Anomaly Detection Algorithm for Multivariate Time Series with Missing Values [J].Computer Science,2024,51(7):108-115.
[6]LI Y H,GUO H G,LIU P P,et al.A Cloud Platform LoadForecasting Method Based on Temporal Convolutional Networks [J].Computer Science,2023,50(7):254-260.
[7]TENG C Y,DING Y C,ZHANG Y B,et al.Ultra-short-term Photovoltaic Power Prediction Based on VMD-Informer-BiLSTM Model [J].High Voltage Engineering,2023,49(7):2961-2971.
[8]KONG F M,GAO L,LI P C,et al.EMD-LSTM-LB Frequency-Domain Time Series Forecasting Algorithm [J].Computer Engineering and Design,2023,44(10):3021-3030.
[9]LI P C,ZHANG F,GAO L,et al.A novel model for chaoticcomplex time series with large of data forecasting[J].Knowledge-based Systems,2021,222:107009.
[10]ZHAO B C,MA J J,CUI L,et al.Anomaly Detection for Photovoltaic Power Generation Based on the Improved VMD-XGBoost-BiLSTM Hybrid Model [J].Computer Engineering,2024,50(3):306-316.
[11]ZHANG J L,LI Y,ZHU Q S,et al.Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer[J].Computer Science,2024,51(5):62-69.
[12]MARYAM Y,NARJES A,MEISAM F,et al.Deep learning-based multistep ahead wind speed and power generation forecasting using direct method[J].Energy Conversion and Management,2023,281:116760-116760.
[13]NEHLER K J,SCHULTZE M.Missing Data Handling via EM and Multiple Imputation in Network Analysis using glasso and atan Regularization[J].Multivariate Behavioral Rsearch,2025,2025:1-23.
[14]GEETA C.Handling Missing Data Through Artificial NeuralNetwork[J].Communications on Applied Nonlinear Analysis,2024,31(7s):677-684.
[15]CHEN X D,LI X C,LIU B,et al.Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Va-lues[C]//International Conference on Learning Representations.2024
[16]LUO D H,WANG X.ModernTCN:A Modern Pure Convolution Structure for General Time Series Analysis[C]//International Conference on Learning Representations.2024
[17]LEVA S,NESPOLI A,PRETTO S,et al,Photovoltaic power andweather parameters[EB/OL].[2023-01-12].https://dx.doi.org/10.21227/42v0-jz14.
[18]LIU Y,HU T G,ZHANG H R,et al.iTransformer:InvertedTransformers Are Effective for Time Series Forecasting[C]//International Conference on Learning Representations.2023.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!