计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 248-259.doi: 10.11896/jsjkx.241100068
黄雪芹, 张胜, 朱先强, 张千桢, 朱承
HUANG Xueqin, ZHANG Sheng, ZHU Xianqiang, ZHANG Qianzhen, ZHU Cheng
摘要: 得益于生成式人工智能的发展,无人系统的智能规划技术将迎来新的变革。首先分析了传统智能任务规划范式在泛化性、可迁移性以及任务规划前后连贯性等方面的缺陷,针对性地提出了基于大模型的任务规划与执行新范式,即生成式任务网。该方法可以帮助无人系统实现任务自主发现、智能规划与自动执行,形成问题到解决的闭环,同时使无人系统的任务规划过程具备了可泛化和易迁移的优势。然后介绍了生成式任务网的内涵,并完成了它的要素定义和流程建模,进而设计了一个通用应用架构。最后以N航空公司航材库作为场景进行应用分析,有效提升了无人系统在仓库管理中的智能化和自动化水平。
中图分类号:
[1]OpenAI:Hello GPT-4o[EB/OL].(2024-05-14) [2024-09-01].https://openai.com/index/hello-gpt-4o/. [2]ZENG T G A,XU B,WANG B,et al.ChatGLM:A Family of Large Language Models from GLM-130B to GLM-4 All Tools[J].arXiv:2406.12793,2024. [3]FIORI L,DOSHI A,MARTINEZ E,et al.The Use of Un-manned Aerial Systems in Marine Mammal Research[J].Remote Sensing.2017,9(6):543. [4]RAMESH P S,MURUGA L J J V.Evaluation of design criteria for mini unmanned aircraft systems(UAS) applications[J].Aircraft Engineering and Aerospace Technology,2022,94(3):327-335. [5]SUN Z,WANG Q,CHEN L,et al.Unmanned Technology-Based Civil-Military Intelligent Logistics System:From Construction to Integration[J].Journal of Beijing Institute of Technology,2022,31(2):140-151. [6]RIZK Y,AWAD M,TUNSTEL E W.Cooperative Heterogeneous Multi-Robot Systems:A Survey[J].ACM Computing Surveys,2020,52(2):1-31. [7]WU X,XIAO B,CAO L,et al.Optimal Transport and ModelPredictive Control-based Simultaneous Task Assignment and Trajectory Planning for Unmanned System Swarm[J].Journal of Intelligent & Robotic Systems,2024(1):28. [8]ZHU Z L,MA G B,HUANG P,et al.Establishment and Solution of Multi-satellite Imaging Scheduling Model Based on Task Decomposition[J].Spacecraft Engineering,2018(2):6-13. [9]BI W,ZHANG M,CHEN H,et al.Cooperative task allocation method for air-sea heterogeneous unmanned system with an application to ocean environment information monitoring[J].Ocean Engineering,2024,309(Part 2):118496. [10]LIU Q,HUANG K,LIU H,et al.Multi-Domain Collaborative Task Allocation and Conflict Resolution in Unmanned Systems under Complex Constraints[J].Unmanned Systems,2024,7(2):1-11. [11]LIU H,LIAO Y,SHEN C S A J.Task Allocation of Heterogeneous Multi-Unmanned Systems Based on Improved Sheep Flock Optimization Algorithm[J].Future Internet,2024,16(4):1-20. [12]SAMIEI A,ISMAIL S,SUN L.Cluster-based hungarian ap-proach to task allocation for unmanned aerial vehicles[C]//2019 IEEE National Aerospaceand Electronics Conference(NAECON).IEEE,2019:148-154. [13]KARAMAN S,SHIMA T,FRAZZOLI E.Effective task assignment for complex uav operations using genetic algorithms[C]//AIAA Guidance,Navigation,and Control Conference.2013:6211. [14]HAKSAR R N,SCHWAGER M.Distributed deep reinforce-ment learning for fighting forest fires with a network of aerial robots[C]//2018 IEEE/RSJ International Conference on Intelligent Robots andSystems(IROS).IEEE,2018:1067-1074. [15]FU X,FENG P,GAO X.Swarm UAVs task and resource dynamic assignment algorithm based on task sequence mechanism[J].IEEE Access:Practical Innovations,Open Solutions,2019,7:41090-41100. [16]WU Y,GOU J,JI H,et al.Hierarchical mission replanning for multiple UAV formations performing tasks in dynamic situation[J].Computer Communications,2023,200:132-148. [17]SHAO T,ZHANG H,CHENG K,et al.Review of replanning in hierarchical task network[J].Systems Engineering and Electronics.2020,42(12):2833-2846. [18]WARNER S M,ROYSET J O.Optimizing Surveillance Satellites for the Synthetic Theater Operations Research Model[J].Military Operations Research,2024,29(1):31-44. [19]WEBER G,THOMAS J J,SAUCEDO J A M,et al.Correction to:Preface:Special Issue on Modeling,Simulation,and Optimization in Operational Research[J].Journal of the Operations Research Society of China,2024,12(2):548. [20]GEORGIEVSKI I,AIELLO M.HTN planning:Overview,comparison,and beyond[J].Artificial Intelligence,2015,222(May):124-156. [21]MORISSET B,GHALLAB M.Learning how to combine sensorymotor modalities for a robust behavior[C]//the International Seminar on Advances in Plan-Based Control of Robotic Agents.Heidelberg,Berlin:Springer,2002:157-178. [22]SIRIN E,PARSIA B,WU D,et al.HTN planning for web service composition using SHOP2[J].Web Semantics:Science,Services and Agents on the World Wide Web,2004,1(4):377-396. [23]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems(NIPS’17).2017:6000-6010. [24]BROWN T B,MANN B,RYDER N,et al.Language Models are Few-Shot Learners[J].arXiv:2005.14165,2020. [25]TOUVRON H,LAVRIL T,IZACARD G,et al.LLaMA:Open and Efficient Foundation Language Models[J].arXiv:2302.13971,2023. [26]TOUVRON H,MARTIN L,STONE K.Llama 2:Open Foundation and Fine-Tuned Chat Models[J].arXiv:2307.09288,2023. [27]ZHANG Y,LI Y,CUI L,et al.Siren’s Song in the AI Ocean:A Survey on Hallucination in Large Language Models[J].arXiv:2309.01219,2023. [28]PENG B,GALLEY M,HE P,et al.Check Your Facts and Try Again:Improving Large Language Models with External Knowledge and Automated Feedback[J].arXiv:2302.12813,2023. [29]WANG L,MA C,FENG X,et al.A Survey on Large Language Model based Autonomous Agents[J].arXiv:2308.11432,2023. [30]YAO S,ZHAO J,YU D,et al.ReAct:Synergizing Reasoningand Acting in Language Models[J].arXiv:2210.03629,2022. [31]CHEN Z,ZHOU K,ZHANG B,et al.ChatCoT:Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large Language Models[J].arXiv:2305.14323.2023. [32]YAO S,YU D,ZHAO J,et al.Tree of thoughts:Deliberateproblem solving with large language models[J].arXiv:2305.10601,2023. [33]ZHUANG Y,CHEN X,YU T,et al.Toolchain*:Efficient action space navigation in large language models with a* search[J].arXiv:2310.13227,2023. [34]DAGAN G,KELLER F,LASCARIDES A.Dynamic planning with aLLM[J].arXiv:2308.06391,2023. [35]SONG C H,WU J,WASHINGTON C,et al.LLM-planner:Few-shot grounded planning for embodied agents with large language models[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:2998-3009. [36]CHEN W,SU Y,ZUO J,et al.Agentverse:Facilitating multi-agent collaboration and exploring emergent behaviors[C]//The Twelfth International Conference on Learning Representations.2023. [37]TEAM X.XAgent:An autonomous agent for complex task solving [EB/OL].https://github.com/OpenBMB/XAgent. [38]WU Q,BANSAL G,ZHANG J,et al.Autogen:Enabling next-gen llm applications via multi-agent conversation framework[J].arXiv:2308.08155,2023. [39]PALANTIR.AIP for defense[EB/OL].https://www.palantir.com/platforms/aip/defense/. [40]CORVEY W.Exploratory models of human-ai teams(emhat)[EB/OL].https://www.darpa.mil/program/exploratory-moldels-of-human-ai-teams |
|