计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 423-429.doi: 10.11896/jsjkx.241200005
• 信息安全 • 上一篇
吕正浩1,2, 咸鹤群1,3
LYU Zhenghao1,2, XIAN Hequn1,3
摘要: 机器学习涉及到昂贵的数据收集和训练成本,模型所有者可能会担心自己的模型遭到未授权的复制或使用,损害到模型所有者的知识产权。因此,如何有效保护这些模型的知识产权成为一个亟待解决的问题。为此,研究人员提出了模型水印的概念。类似于数字水印技术将水印嵌入图像的方式,模型水印通过将特定的标识嵌入机器学习模型中,以达到版权确认的目的。然而,现有的水印方案在实际应用中存在一些局限性。首先,水印的嵌入不可避免地会对模型性能产生一定影响;其次,水印可能会通过微调等技术手段被移除。针对此类问题,提出一种新型的神经网络水印方案,采用区域化和分阶段的嵌入方式。这种方法不仅旨在最大限度地减少对模型性能的影响,还力图提升水印本身的鲁棒性。在MNIST,CIFAR-10和CIFAR-100数据集上的实验验证了该方案的有效性。实验结果表明,该水印方案在保持水印存活率的同时,对模型性能的影响极小,相较于现有的基线水印方案,模型性能提升幅度最高可达18个百分点。此外,所提出的方案对微调等攻击手段表现出较强的鲁棒性,并且不受模型剪枝操作的影响。即便攻击者试图完全移除水印,也必须以显著降低模型性能为代价。
中图分类号:
| [1]BALCZEWSKI E A,CAO J,SINGH K.Risk prediction and machine learning:a case-based overview[J].Clinical Journal of the American Society of Nephrology,2023,18(4):524-526. [2]NALISNICK E,SMYTH P,TRAN D.A brief tour of deeplearning from a statistical perspective[J].Annual Review of Statistics and Its Application,2023,10(1):219-246. [3]ZHANG H,SHAO H.Exploring the Latest Applications ofOpenAI and ChatGPT:An In-Depth Survey[J].CMES-Compu-ter Modeling in Engineering & Sciences,2024,138(3):2061-2102. [4]XU P,JI X,LI M,et al.Small data machine learning in materials science[J].NPJ Computational Materials,2023,9(1):42. [5]DAIDONE M,FERRANTELLI S,TUTTOLOMONDO A.Machine learning applications in stroke medicine:Advancements,challenges,and future prospectives[J].Neural Regeneration Research,2024,19(4):769-773. [6]LAI Q,YANG L,HU G,et al.Constructing multiscroll memristive neural network with local activity memristor and application in image encryption[J].IEEE Transactions on Cybernetics,2024,54(7):4039-4048. [7]GOLDBERG Y.A primer on neural network models for natural language processing[J].Journal of Artificial Intelligence Research,2016,57:345-420. [8]MEHRISH A,MAJUMDER N,BHARADWAJ R,et al.A review of deep learning techniques for speech processing[J].Information Fusion,2023,99:101869. [9]CHIB P S,SINGH P.Recent Advancements in End-to-End Autonomous Driving Using Deep Learning:A Survey[J].IEEE Transactions on Intelligent Vehicles,2024,9(1):103-118. [10]KIM J,KIM J,KIM H,et al.CNN-based network intrusion detection against denial-of-service attacks[J].Electronics,2020,9(6):916. [11]LI Y,YAN H,HUANG T,et al.Model architecture level privacy leakage in neural networks[J].Science China Information Sciences,2024,67(3):132101. [12]AKHTAR N,MIAN A.Threat of adversarial attacks on deep learning in computer vision:A survey[J].IEEE Access,2018,6:14410-14430. [13]PENG S,CHEN Y,XU J,et al.Intellectual property protection of DNN models[J].World Wide Web,2023,26(4):1877-1911. [14]OREKONDY T,SCHIELE B,FRITZ M.Knockoff Nets:Stea-ling functionality of black-box models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4954-4963. [15]WU H,ZHANG J,LI Y,et al.Overview of artificial intelligence model watermarking[J].Journal of Image Graphics,2023,28(6):1792-1810. [16]KAHNG A B,LACH J,MANGIONE-SMITH W H,et al.Watermarking techniques for intellectual property protection[C]//Proceedings of the 35th Annual Design Automation Conference.1998:776-781. [17]KUMAR J,KUMAR M.Comparison of image compressionmethods on various images[C]//2015 International Conference on Advances in Computer Engineering and Applications.IEEE,2015:114-118. [18]HE Y,XIAO L.Structured pruning for deep convolutional neural networks:A survey[J].IEEE Transactions on Pattern Ana-lysis and Machine Intelligence,2023,46(5):2900-2919. [19]CHURCH K W,CHEN Z,MA Y.Emerging trends:A gentle introduction to fine-tuning[J].Natural Language Engineering,2021,27(6):763-778. [20]UCHIDA Y,NAGAI Y,SAKAZAWA S,et al.Embedding watermarks into deep neural networks[C]//Proceedings of the 2017 ACM on International Conference on Multimedia Retrie-val.2017:269-277. [21]ADI Y,BAUM C,CISSE M,et al.Turning your weakness intoa strength:Watermarking deep neural networks by backdooring[C]//27th USENIX Security Symposium(USENIX Security 18).2018:1615-1631. [22]LEE S,SONG W,JANA S,et al.Evaluating the robustness of trigger set-based watermarks embedded in deep neural networks[J].IEEE Transactions on Dependable and Secure Computing,2022,20(4):3434-3448. [23]YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferableare features in deep neural networks?[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2014:3320-3328. [24]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[C]//Proceedings of the IEEE.1998:2278-2324. [25]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[EB/OL].https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf. [26]LIAN D,ZHOU D,FENG J,et al.Scaling & shifting your features:A new baseline for efficient model tuning[J].Advances in Neural Information ProcessingSystems,2022,35:109-123. [27]ZHANG Y,WU H,LIN F,et al.Deep learning model pruning technology in image recognition[J].Journal of Nanjing University of Science and Technology,2023,47:699-707. [28]FAN L,NG K W,CHAN C S.Rethinking deep neural network ownership verification:Embedding passports to defeat ambiguity attacks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:4714-4723. [29]CHEN H,ROUHANI B D,KOUSHANFAR F.Blackmarks:Blackbox multibit watermarking for deep neural networks[J].arXiv:1904.00344,2019. [30]LYU P,MA H,CHEN K,et al.MEA-Defender:A Robust Watermark against Model Extraction Attack[J].arXiv:2401.15239,2024. [31]LYU P,LI P,ZHU S,et al.Ssl-wm:A black-box watermarking approach for encoders pre-trained by self-supervised learning[J].arXiv:2209.03563,2022. [32]LIU H,WU Y H,LI X D,et al.Deep neural network modelcopyright protection framework based on external samples[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2025,37(3):405-416. [33]PENG W P,LIU J B,PING Y,et al.Model protection scheme for fusion of internal and external feature watermarks[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2024,36(4):765-774. [34]PODILCHUK C I,DELP E J.Digital watermarking:algorithms and applications[J].IEEE Signal Processing Magazine,2001,18(4):33-46. [35]JIA H,CHOQUETTE-CHOO C A,CHANDRASEKARAN V,et al.Entangled watermarks as a defense against model extraction[C]//30th USENIX Security Symposium(USENIX Security 21).2021:1937-1954. [36]ZHANG J,GU Z,JANG J,et al.Protecting intellectual propertyof deep neural networks with watermarking[C]//Proceedings of the 2018 on Asia Conference on Computer and Communications Security.2018:159-172. |
|
||