计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200215-6.doi: 10.11896/jsjkx.241200215

• 计算机网络 • 上一篇    下一篇

基于优化模型的MEC网络任务卸载与迁移策略

于萍1, 颜辉2, 鲍杰1, 耿晓中1   

  1. 1 长春工程学院计算机技术与工程学院 长春 130012
    2 宿迁学院信息工程学院 江苏 宿迁 223800
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 耿晓中(dq_gxz@ccit.edu.cn)
  • 作者简介:yuping@ccit.edu.cn
  • 基金资助:
    吉林省科技厅项目(20240404058ZP)

MEC Network Task Offloading and Migration Strategy Based on Optimization Model

YU Ping1, YAN Hui2, BAO Jie1, GENG Xiaozhong1   

  1. 1 School of Computer Technology and Engineering,Changchun Institute of Engineering,Changchun 130012,China
    2 School of Information Engineering,Suqian University,Suqian,Jiangsu 223800,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Jilin Province Science and Technology(S & T) Department(20240404058ZP).

摘要: 优化模型驱动的移动边缘计算(Mobile Edge Computing,MEC)网络任务卸载与迁移策略研究基于物联网设备激增和5G技术推广的背景展开。MEC通过将计算资源迁移至网络边缘,显著降低数据传输延迟和云端压力。为此,提出一系列任务卸载与迁移策略,并通过性能评估验证其效果。实验结果表明,所提策略在典型应用场景中显著优化了关键性能指标:延迟降低约25%,能耗减少30%,任务吞吐量提升20%。具体优化包括:动态资源调度实现负载均衡,改进卸载效率;基于QoS(Qua-lity of Service)保障的迁移机制确保服务稳定性;跨层优化设计提升多任务协作能力。此外,通过机器学习预测技术,动态适应网络波动,提高系统灵活性。研究结论指出,优化模型在确保资源高效分配和任务实时性方面具备突出优势,提升了MEC网络的服务质量和用户体验。策略可广泛适用于异构网络和动态环境,具备进一步拓展的潜力。

关键词: 移动边缘计算, 任务卸载, 优化模型, 遗传算法, 迁移策略

Abstract: The research on task offloading and migration strategies in optimization model-driven Mobile Edge Computing(MEC) networks is conducted against the backdrop of the surge in Internet of Things(IoT) devices and the widespread adoption of 5G technology.MEC significantly reduces data transmission latency and cloud-side pressure by migrating computing resources to the network edge.This study proposes a series of task offloading and migration strategies and validates their effectiveness through performance evaluations.Experimental results demonstrate that the proposed strategies optimize key performance indicators in typical application scenarios: latency is reduced by approximately 25%,energy consumption is decreased by 30% and task throughput is increased by 20%.Specific optimizations include dynamic resource scheduling for load balancing and improved offloading efficiency;a Quality of Service(QoS)-guaranteed migration mechanism to ensure service stability; and cross-layer optimization design to enhance multi-task collaboration capabilities.Additionally,machine learning-based prediction techniques are employed to dynamically adapt to network fluctuations,thereby improving system flexibility.The research conclusions indicate that the optimization model offers significant advantages in ensuring efficient resource allocation and task real-time performance,thereby enhancing the service quality and user experience of MEC networks.The strategies can be widely applied in heterogeneous networks and dynamic environments,demonstrating potential for further expansion.

Key words: Mobile edge computing, Task offloading, Optimization model, Genetic algorithm, Migration strategy

中图分类号: 

  • TP309
[1]HU H,SHEN Y.Load balancing task unloading for multi-type task load prediction [J].Computer System Applications,2024,33(12):16-29.
[2]WU B,LONG T Y,WAN L,et al.Task unloading strategybased on the improved particle swarm algorithm in MEC [J / OL].Computer Engineering,1-12 [2024-12-29].https://doi.org/10.19678/j.issn.1000-3428.0069852.
[3]WANG C,LIU S,ZUO M M.Unloading strategy based on the implicit quantile network [J / OL].Computer Engineering,1-11 [2024-12-29].https://doi.org/10.19678/j.issn.1000-3428.0069929.
[4]ZHU Y,JIANG X.Based on cloud edge collaboration [J / OL].Radio Engineering,1-21 [2024-12-29].http://kns.cnki.net/kcms/detail/13.1097.tn.20241010.0924.004.html.
[5]HOU J R,QU Y W.Research on semi-migration unloadingmode based on mobile edge computing [J].Journal of Yunnan University for Nationalities(Natural Science Edition),2024,33(6):746-752.
[6]CHEN K.Energy efficiency optimization based on depth-determined policy gradient in MEC network [J].Fire and Command and Control,2024,49(7):44-49.
[7]XU F,NING X,AN S,et al.Low-orbit satellite network for M-DRL [J].Journal of Xi’an University of Technology,2024,44(3):395-404.
[8]DENG H N,YE A Y,LIU Y N,et al.An online task unloading mechanism for privacy perception in mobile edge computing [J].Journal of Information Security,2023,8(4):126-138.
[9]KONG X S,YUAN J.Blockchain moving edge computing unloading model based on the bird flock artificial fish flock algorithm [J].Electronics,2024,37(8):26-33.
[10]CHEN L.Reinforcement learning-based task unloading and resource allocation in the MEC network [J].Journal of Wuhan University(Engineering Edition),2024,57(3):363-371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!