计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 92-102.doi: 10.11896/jsjkx.250200011
刘亚俊, 纪庆革
LIU Yajun, JI Qingge
摘要: 由于人类行为存在不确定性以及预测未来固有的多模态特点,如何区别预测轨迹的可能性与重要性成为不可避免的问题;行人运动模式则可以作为区分的基准特征。现有以运动模式作为切入点的研究非常匮乏;此外,以往研究局限于轨迹时域或频域单个维度,未能同时纳入研究。为此,提出了一种基于运动模式与时频域融合的行人轨迹预测模型MPTF,其由轨迹概率预测、回归预测与门控融合网络等组成。概率预测子网络提取轨迹时频域高维特征,结合运动模式以分类方式推理未来轨迹发生概率;回归预测子网络的时域处理分支挖掘行人社交关系,频域处理分支则着重关注不同频率分量对预测准确性的差异性影响;门控网络融合双维度推理特征,以回归方式预测多模态未来轨迹。公开数据集实验表明:MPTF在评估指标ADE与FDE上的总体性能达到研究前沿同等竞争力水平,在UNIV数据集上,ADE/FDE取得0.22/0.40的最优结果,在ETH数据集上,FDE提升8.5%,证明了结合时频域轨迹特征方法的有效性。
中图分类号:
[1]ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:Human trajectory prediction in crowded spaces[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2016:961-971. [2]GUPTA A,JOHNSON J,LI F F,et al.Social GAN:Socially Acceptable Trajectories with Generative Adversarial Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(ICCV).IEEE,2018:2255-2264. [3]MOHAMED A,QIAN K,ELHOSEINY M,et al.Social-STGCNN:A Social Spatio-Temporal Graph Convolutional Neural Network forHuman Trajectory Prediction[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(ICCV).IEEE,2020:14412-14420. [4]ZHOU H,REN D,XIA H,et al.AST-GNN:An attention-based spatio-temporal graph neural network for Interaction-aware pedestrian trajectory prediction[J].Neurocomputing,2021,445:298-308. [5]CHEN W,SANG H,WANG J,et al.STIGCN:spatial-temporal interaction-aware graph convolution network for pedestrian trajectory prediction[J].The Journal of Supercomputing,2024,80(8):10695-10719. [6]HUANG Y,BI H,LI Z,et al.Stgat:Modelingspatial-temporal interactions for human trajectory prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2019:6272-6281. [7]SALZMANN T,IVANOVIC B,CHAKRAVARTY P,et al.Trajectron++:Dynamically-feasible trajectory forecasting with heterogeneous data[C]//Computer Vision-ECCV 2020:16th European Conference.Springer,2020:683-700. [8]SHI L,WANG L,LONG C,et al.Social interpretable tree for pedestrian trajectory prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:2235-2243. [9]XU Y,PIAO Z,GAO S.Encoding crowd interaction with deep neural network for pedestrian trajectory prediction[C]//Proceedings of the IEEE Conference on Compu-ter Vision and Pattern Recognition(ICCV).IEEE,2018:5275-5284. [10]YUE J,MANOCHA D,WANG H.Human trajectory prediction via neural social physics[C]//European Conference on Compu-ter Vision(ECCV).Springer,2022:376-394. [11]PELLEGRINI S,ESS A,SCHINDLER K,et al.You'll neverwalk alone:Modeling social behaviorfor multi-target tracking[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:261-268. [12]LERNER A,CHRYSANTHOU Y,LISCHINSKI D.Crowds by example[C]//Computer Graphics Forum.Oxford,UK:Blackwell Publishing Ltd.,2007:655-664. [13]ROBICQUET A,SADEGHIAN A,ALAHI A,et al.Learning social etiquette:Human trajectory understanding in crowded scenes[C]//Computer Vision-ECCV 2016:14th European Conference.Springer,2016:549-565. [14]SUN J,LI Y X,FANG H S,et al.Three Steps to Multimodal Trajectory Prediction:Modality Clustering,Classification and Synthesis[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2021:13230-13239. [15]SHI L,WANG L,ZHOU S,et al.Trajectory Unified Transformer for Pedestrian Trajectory Prediction[C]//2023 IEEE/CVF International Conference on Computer Vision(ICCV).2023:9641-9650. [16]YU C,MA X,REN J,et al.Spatio-temporalgraph transformer networks for pedestrian trajectory prediction[C]//Computer Vision-ECCV 2020:16th European Conference.Springer,2020:507-523. [17]WONG C,XIA B,HONG Z,et al.View vertically:A hierarchical network for trajectory prediction via fourier spectrums[C]//European Conference on Computer Vision(ECCV).Springer,2022:682-700. [18]LIU S,ZHU Y,YAO P,et al.SpectrumNet:Spectrum-BasedTrajectory Encode Neural Network for Pedestrian Trajectory Prediction[C]//ICASSP 2024-2024 IEEE International Confe-rence on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2024:7075-7079. [19]ZHOU T,MA Z,WEN Q,et al.Fedformer:Frequency enhanced decomposed transformer for long-term series forecasting[C]//International Conference on Machine Learning.PMLR,2022:27268-27286. [20]ELDELE E,RAGAB M,CHEN Z,et al.Tslanet:Rethinkingtransformers for time series representation learning[J].arXiv:2404.08472,2024. [21]LUO Y,ZHANG S,LYU Z,et al.Tfdnet:Time-frequency enhanced decomposed network for long-term time series forecasting[J].Pattern Recognition,2025,162:111412. [22]YI K,ZHANG Q,FAN W,et al.Frequency-domain mlps are more effective learners in time series forecasting[J].Advances in Neural Information Processing Systems,2023,36:76656-76679. [23]YUE W,LIU Y,YING X,et al.FreEformer:Frequency Enhanced Transformer for Multivariate Time Series Forecasting[J].arXiv:2501.13989,2025. [24]SADEGHIAN A,KOSARAJU V,SADEGHIAN A,et al.So-phie:An attentive gan for predicting paths compliant to social and physical constraints[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:1349-1358. [25]MANGALAM K,GIRASE H,AGARWAL S,et al.It is not the journey but the destination:Endpoint conditioned trajectory prediction[C]//Computer Vision-ECCV 2020:16th European Conference.Springer,2020:759-776. [26]DUAN J,WANG L,LONG C,et al.Complementary attention gated network for pedestrian trajectory prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:542-550. [27]XU C,MAO W,ZHANG W,et al.Remember intentions:Retrospective-memory-based trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2022:6488-6497. [28]XU C,LI M,NI Z,et al.Groupnet:Multiscale hypergraph neuralnetworks for trajectory prediction with relational reasoning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:6498-6507. [29]XU C,TAN R T,TAN Y,et al.Eqmotion:Equivariant multi-agent motion prediction with invariant interaction reasoning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(ICCV).IEEE,2023:1410-1420. [30]DONG Y,WANG L,ZHOU S,et al.Recurrent Aligned Network for Generalized Pedestrian Trajectory Prediction[J].ar-Xiv:2403.05810,2024. [31]WANG M,ZHU X,YU C,et al.Ganet:Goal area network for motion forecasting[C]//2023 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2023:1609-1615. [32]MANGALAM K,AN Y,GIRASE H,et al.From goals,way-points & paths to long termhuman trajectory forecasting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:15233-15242. [33]CAO Z,GAO H,MANGALAM K,et al.Long-term human motion prediction with scenecontext[C]//Computer Vision-ECCV 2020:16th European Conference.Springer,2020:387-404. [34]XU P,HAYET J B,KARAMOUZAS I.Socialvae:Human trajectory prediction using timewise latents[C]//European Confe-rence on Computer Vision.Cham:Springer,2022:511-528. [35]LIANG J,JIANG L,NIEBLES J C,et al.Peeking into the future:Predicting future person activities and locations in videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5725-5734. |
|