计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 119-127.doi: 10.11896/jsjkx.250400037
宋志超1,2, 张建平3, 张其阳2, 方玺1, 谢良1, 宋少莉3, 胡战利2
SONG Zhichao1,2, ZHANG Jianping3, ZHANG Qiyang2, FANG Xi1, XIE Liang1, SONG Shaoli3, HU Zhanli2
摘要: 正电子发射断层扫描(PET)延迟成像在肿瘤异质性分析和治疗评估中具有重要意义,但其临床应用受限于分辨率低、噪声高和定量不准确等问题。计算机断层扫描(CT)能够提供高分辨率的解剖信息,但在肿瘤评估中缺乏功能信息,难以区分良恶性病变和评估代谢活动。虽然动态PET/CT融合能提升图像质量,但多次CT扫描会增加患者累积辐射暴露,不利于长期随访。针对上述问题,提出了一种超分增强PET/CT多模态核矩阵约束算法(SR-PET/CT-KMC)。该算法基于Stable Diffusion对初始扫描PET图像进行超分增强,并将其与初始扫描CT图像的解剖先验信息相结合,建立了多模态PET/CT核矩阵约束的期望最大化(EM)迭代框架。Stable Diffusion用于提升初始扫描PET的分辨率,而多模态PET/CT先验信息则用于抑制噪声和伪影。通过利用初始扫描CT的结构信息,降低了延迟成像中CT扫描的需求,从而减少了患者累积辐射暴露。实验结果表明,SR-PET/CT-KMC与PET-KEM相比,PSNR提高了6.23%,SSIM提高了9.64%,NRMSE降低了33.3%,MSE降低了13.92%;与CT-KEM相比,PSNR提高了4.05%,SSIM提高了1.11%,NRMSE降低了33.3%,MSE降低了8.11%。这些结果表明,SR-PET/CT-KMC在提升延迟扫描PET图像分辨率和定量准确性方面具有优势,为肿瘤代谢追踪提供了一种新的成像范式,提高了延迟PET成像的临床可行性。
中图分类号:
[1]STAFFORD W C,PENG X,OLOFSSON M H,et al.Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy[J].Science Translational Medicine,2018,10(428):eaaf7444. [2]SCHWENCK J,SONANINI D,COTTON J M,et al.Advances in PET imaging of cancer[J].Nature Reviews Cancer,2023,23(7):474-490. [3]CROTEAU E,RENAUD J M,RICHARD M A,et al.PET Metabolic Biomarkers for Cancer:Supplementary Issue:Biomarkers and their Essential Role in the Development of Personalised Therapies(A)[J].Biomarkers in cancer,2016,8:BIC.S27483. [4]GRASSO V,WILLUMEIT-RÖMER R,JOSE J.Superpixelspectral unmixing framework for the volumetric assessment of tissue chromophores:A photoacoustic data-driven approach[J].Photoacoustics,2022,26:100367. [5]KHARE S K,MARCH S,BARUA P D,et al.Application of data fusion for automated detection of children with developmental and mental disorders:A systematic review of the last decade[J].Information Fusion,2023,99:101898. [6]BAGCI U,UDUPA J K,MENDHIRATTA N,et al.Joint segmentation of anatomical and functional images:Applications in quantification of lesions from PET,PET-CT,MRI-PET,and MRI-PET-CT images[J].Medical Image Analysis,2013,17(8):929-945. [7]BONNEY L M,KALISVAART G M,VAN VELDEN F H P,et al.Deep learning image enhancement algorithms in PET/CT imaging:a phantom and sarcoma patient radiomic evaluation[J].European Journal of Nuclear Medicine and Molecular Imaging,2025:1-12. [8]DIMITRAKOPOULOU-STRAUSS A,PAN L,SACHPEKIDISC.Kinetic modeling and parametric imaging with dynamic PET for oncological applications:general considerations,current clinical applications,and future perspectives[J].European journal of nuclear medicine and molecular imaging,2021,48:21-39. [9]ZONDERVAN R L,HAHN P F,SADOW C A,et al.Frequent body CT scanning of young adults:indications,outcomes,and risk for radiation-induced cancer[J].Journal of the American College of Radiology,2011,8(7):501-507. [10]MATAAC M T,LI X,REHANI M M.What proportion of CT scan patients are alive or deceased after 10 years?[J].European Journal of Radiology,2024,178:111629. [11]ALBERTS I,SARI H,MINGELS C,et al.Long-axial field-of-view PET/CT:perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients[J].Cancer Imaging,2023,23(1):28. [12]MOSTAFAPOUR S,GREUTER M,VAN SNICK J H,et al.Ultra-low dose CT scanning for PET/CT[J].Medical Physics,2024,51(1):139-155. [13]SHEN C,TIE C,YANG Z,et al.Bidirectional condition diffu-sion probabilistic models for pet image denoising[J].IEEE Transactions on Radiation and Plasma Medical Sciences,2024,8(4):402-415. [14]WANG J,YUE Z,ZHOU S,et al.Exploiting diffusion prior for real-world image super-resolution[J].International Journal of Computer Vision,2024,132(12):5929-5949. [15]AI X,HUANG B,CHEN F,et al.RED:Residual estimation diffusion for low-dose PET sinogram reconstruction[J].Medical Image Analysis,2025,102:103558. [16]ZHANG Q,HU Y,ZHOU C,et al.Reducing pediatric total-body PET/CT imaging scan time with multimodal artificial intelligence technology[J].European Journal of Nuclear Medicine and Molecular Imaging physics,2024,11(1):1. [17]FILIPOVIĆ M,BARAT E,DAUTREMER T,et al.PET reconstruction of the posterior image probability,including multimodal images[J].IEEE Transactions on Medical Imaging,2018,38(7):1643-1654. [18]ZAIDI H,BECKER M.The promise of hybrid PET\/MRI:technical advances and clinical applications[J].IEEE Signal Processing Magazine,2016,33(3):67-85. [19]CHEN Z,LIU Y,ZHANG Y,et al.Enhanced Multimodal Low-rank Embedding based Feature Selection Model for Multimodal Alzheimer’s Disease Diagnosis[J].IEEE Transactions on Medical Imaging,2025,44(2):815-827. [20]WANG G,QI J.PET image reconstruction using kernel method[J].IEEE Transactions on Medical Imaging,2014,34(1):61-71. [21]MULLER F M,LI E J,DAUBE-WITHERSPOON M E,et al.Impact of deep learning denoising on kinetic modelling for low-dose dynamic PET:application to single-and dual-tracer imaging protocols[J].European Journal of Nuclear Medicine and Mole-cular Imaging,2025:1-19. [22]ZHOU S,CHAN K,LI C,et al.Towards robust blind face restoration with codebook lookup transformer[J].Advances in Neural Information Processing Systems,2022,35:30599-30611. [23]DRAELOS R L,DOV D,MAZUROWSKI M A,et al.Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes[J].Medical Image Analysis,2021,67:101857. [24]NUYTS J,MICHEL C,DUPONT P.Maximum-likelihood expectation-maximization reconstruction of sinograms with arbitrary noise distribution using NEC-transformations[J].IEEE Transactions on Medical Imaging,2001,20(5):365-375. [25]HU R,CUI J,LI C,et al.Dynamic low-count PET image reconstruction using spatio-temporal primal dual network[J].Physics in Medicine & Biology,2023,68(13):135015. |
|