计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 155-163.doi: 10.11896/jsjkx.200800072

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于多源位置数据的居民出行频繁模式挖掘

吴成凤, 蔡莉, 李劲, 梁宇   

  1. 云南大学软件学院 昆明650091
  • 收稿日期:2020-08-12 修回日期:2020-09-19 出版日期:2021-07-15 发布日期:2021-07-02
  • 通讯作者: 蔡莉(caili@ynu.edu.cn)
  • 基金资助:
    国家自然科学基金(61663047)

Frequent Pattern Mining of Residents’ Travel Based on Multi-source Location Data

WU Cheng-feng, CAI Li, LI Jin, LIANG Yu   

  1. School of Software,Yunnan University,Kunming 650091,China
  • Received:2020-08-12 Revised:2020-09-19 Online:2021-07-15 Published:2021-07-02
  • About author:WU Cheng-feng,born in 1995,postgra-duate.Her main research interests include data mining and traffic big data analysis.(wuchengfeng@mail.ynu.edu.cn)
    CAI Li,born in 1975,Ph.D,associate professor,postgraduate supervisor.Her main research interests include data mining and data quality.
  • Supported by:
    National Natural Science Foundation of China(61663047).

摘要: 随着城市化进程的不断深入,居民出行频繁模式挖掘成为一个研究热点。然而,现有的研究存在一些问题,如缺乏对频繁模式发生的目的和意义的描述,以及对挖掘结果分析不全面等。针对这些问题,文中提出了一种新颖的居民出行频繁模式挖掘方法(Mining Method of Residents’ Frequent Travel Patterns,MMoRFTP)。首先,采用形态学图像方式将地图划分为多个区域,利用融合后的多源位置数据来构建出行模式,并采用主题模型识别每个区域的功能;然后,将缺乏语义信息的出行轨迹转化为具有区域和功能区语义的出行轨迹,并以区域为节点、语义轨迹为边构建居民出行模式图和标签模式图,在图模型构建的基础上提出MulEdge算法来挖掘区域之间由居民出行所形成的频繁关联模式。文中以城市路网数据、POI数据、出租车GPS数据和签到数据作为对象进行实验,结果表明MMoRFTP方法具有良好的性能,其发现的出行频繁模式能为道路规划、交通管理、商业布局等应用提供决策依据。

关键词: 标签图, 城市功能区域, 多源位置数据, 频繁模式图, 频繁模式挖掘

Abstract: With the improvement of urbanization,the mining of frequent patterns for resident’s travel has become a hot topic.Most of existing studies have problems such as the lack of description of the purpose and significance for frequent travel patterns,and incomplete analysis for mining results.To address these issues,firstly,this paper proposes a novel mining method of residents’ frequent travel patterns (MMoRFTP).It divides the map into several different regions by using morphological image method,builds the travel model by using the fused multi-source location data,and identifies the city functions of each region by using topic model.Then,it transforms travel trajectories lacking semantic information into ones with regional and functional areas semantics,and constructs the travel pattern graph and label pattern graph with region as node and semantic trajectory as edge.Based on graph model construction,the MulEdge algorithm is proposed to mine the frequent association pattern of residents’ travel.In this paper,urban road network data,POI data,taxi GPS data and check-in data are used in the experiment.The results show that MMoRFTP has good performance,and the discovered frequent travel patterns can provide a decision-making basis for road planning,traffic management,commercial layout and so on.

Key words: City functional regions, Frequent pattern graph, Frequent pattern mining, Label graph, Multi-source location data

中图分类号: 

  • TP311.12
[1]MAO H H.Research on Person Trip Characteristics of Chinese Citizens [D].Beijing:Beijing University of Technology,2005.
[2]FENG T.Visual Analysis of Resident Trip Mode Based on Taxi OD Data[D].Wuhan:Wuhan university,2017.
[3]XIAO F,WANG Y,MEI Y N,et al.City Functional Region Discovery Algorithm Based on Travel Pattern Subgraph[J].Computer Science,2018,45(12):268-278.
[4]CHU D,SHEETS D,ZHAO Y,et al.Visualizing HiddenThemes of Taxi Movement with Semantic Transformation[C]//IEEE Pacific Visualization Symposium.2014:137-144.
[5]SUN G Z.Taxi Travel Demand Forecasting in Pick-up Hotspots Areas Based on GPS Trajectory Data[D].Beijing:Beijing Jiaotong University,2019.
[6]KOSTOV V,OZAWA J,YOSHIOKA M,et al.Travel Destination Prediction Using Frequent Crossing Pattern from Driving History[C]//Intelligent Transportation Systems.IEEE,2005:364-368.
[7]SAVAGE N S,NISHIMURA S,CHAVEA N E,et al.Frequent Trajectory Mining on GPS Data[C]//Proceedings of the Third International Workshop on Location & the Web.ACM,2010:3-7.
[8]COMITO C,FALCONE D,TALIA D,et al.Mining HumanMobility Patterns from Social Geo-Tagged Data[J].Pervasive and Mobile Computing,2016,33:91-107.
[9]YU W.Discovering Frequent Movement Paths from Taxi Tra-jectory Data Using Spatially Embedded Networks and Association Rules[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(3):855-866.
[10]NIU X Z,NIU J J,SU D Z,et al.FP-Tree-Based Approach for Frequent Trajectory Pattern Mining[J].Journal of University of Electronic Science and Technology,2016(1):86-90,134.
[11]LEE I,CAI G,LEE K.Mining Points-of-Interest AssociationRules from Geo-tagged Photos[C]//Hawaii International Conference on System Sciences.IEEE,2013.
[12]ZHENG Y,LIU Y,YUAN J,et al.Urban Computing withTaxicabs[C]//International Conference on Ubiquitous Computing.ACM,2011:89.
[13]YAN X,HAN J.Discovery of Frequent Substructures[M]//Mining Graph Data.America:John Wiley & Sons,Inc.2006:97-115.
[14]HAN W S,LEE J,LEE J H.TurboISO:Towards Ultrafast and Robust Subgraph Isomorphism Search in Large Graph Databases[C]//ACM Sigmod International Conference on Management of Data.ACM,2013:337-348.
[15]YUAN N J,ZHENG Y,XIE X,et al.Discovering Urban Functional Zones Using Latent Activity Trajectories[J].IEEE Transactions on Knowledge and Data Engineering,2014,27(3):712-725.
[16]LI X F,MA D W,ZHAN Y J,et al.the Research on Algorithm of Image’s Erosion and Dilation[J].Imaging Techniques,2005(1):37-39.
[17]HAO Z B,HONG B R,HUANG Q C.Study of Coverage Path Planning Based on Grid-Map[J].Computer Application Research,2007,24(10):56-58.
[18]CAI L.Fusion and Mining of MULTI-Source Location Data[D].Shanghai:Fudan university,2020.
[19]BENTON A,DREDZE M.Deep Dirichlet Multinomial Regression[C]//Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:365-374.
[20]ULLMANN J R.An Algorithm for Subgraph Isomorphism [J].Journal of the ACM,1976,23(1):31-42.
[21]WENQ L.Efficient Techniques for Subgraph Mining and Query Processing[D].Singapore:Nanyang Technological University,2015.
[22]KURAMOCHI M,KARYPIS G.Finding Frequent Patterns in a Large Sparse Graph[J].Data Mining and Knowledge Discovery,2005,11(3):243-271.
[23]ZHOU L L,YE N.Digraph Frequent Subgraph Mining Based on gSpan[J].Journal of Nanjing University (Natural Science edition),2011,47(5):532-543.
[24]LEI K,HE W.Research on Software Defect Detection Method Based on Data Mining Technology[J].Electronic World,2012(15):112-114.
[25]ELSEIDY M,ABDELHAMID E,SKIADOPOULOS S,et al.GRAMI:Frequent Subgraph and Pattern Mining in a Single Large Graph[J].Proceedings of the Vldb Endowment,2014,7(7):517-528.
[26]YAN X,HAN J.Gspan:Graph-Based Substructure PatternMining[C]//2002 IEEE International Conference on Data Mi-ning,2002.IEEE,2002:721-724.
[27]HUAN J,WANG W,PRINS J.Efficient Mining of FrequentSubgraphs in the Presence of Isomorphism[C]//Third IEEE International Conference on Data Mining.IEEE,2003:549-552.
[28]YANG H G,SHEN D R,KOU Y,et al.Strongly Connected Components Based Efficient PPR Algorithms[J].Journal of Computer Science,2017,40(3):584-600.
[29]LI X T,LI J Z,GAO H.An Efficient Frequent Subgraph Mining Algorithm[J].Journal of software,2007(10):107-118.
[1] 方仲礼, 王喆, 迟子秋.
面向多标签小样本学习的双流重构网络
Dual-stream Reconstruction Network for Multi-label and Few-shot Learning
计算机科学, 2022, 49(1): 212-218. https://doi.org/10.11896/jsjkx.201100143
[2] 肖飞, 王悦, 梅逸男, 白璐, 崔丽欣.
基于出行模式子图的城市功能区域发现方法
City Functional Region Discovery Algorithm Based on Travel Pattern Subgraph
计算机科学, 2018, 45(12): 268-278. https://doi.org/10.11896/j.issn.1002-137X.2018.12.044
[3] 高昂,杨扬,王玥薇.
一种新的工作流频繁模式挖掘算法研究
New Algorithm Research for Mining Workflow Frequent Pattern
计算机科学, 2009, 36(9): 231-233.
[4] 何海涛 张世玲.
基于矩阵的频繁模式挖掘及更新算法

计算机科学, 2008, 35(3): 200-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!