计算机科学 ›› 2022, Vol. 49 ›› Issue (12): 319-325.doi: 10.11896/jsjkx.220200155

• 计算机网络 • 上一篇    下一篇

车联网中基于航位推算的故障检测方法

刘家希1,2,3, 吴娜1,2, 丁飞1,2   

  1. 1 南京邮电大学物联网学院 南京210003
    2 江苏省宽带无线通信和物联网重点实验室 南京210003
    3 计算机软件新技术国家重点实验室(南京大学) 南京210023
  • 收稿日期:2022-02-24 修回日期:2022-05-13 发布日期:2022-12-14
  • 通讯作者: 丁飞(dingfei@njupt.edu.cn)
  • 作者简介:(liujiaxi@njupt.edu.cn)
  • 基金资助:
    计算机软件新技术国家重点实验室开放课题(KFKT2021B21);江苏省双创博士项目(CZ016SC20010);江苏省六大人才高峰项目(DZXX-008);中国博士后科学基金(2019M661900);江苏省博士后基金(2019K026);南京邮电大学启动基金(NY219134,NY220028,NY219133)

Fault Detection Based on Dead Reckoning in VANETs

LIU Jia-xi1,2,3, WU Na1,2, DING Fei1,2   

  1. 1 School of Internet of Things,Nanjing University of Posts and Telecommunication,Nanjing 210003,China
    2 Jiangsu Key Laboratory of Broadband Wireless Communication and Internet of Things,Nanjing 210003,China
    3 State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210023,China
  • Received:2022-02-24 Revised:2022-05-13 Published:2022-12-14
  • About author:LIU Jia-xi,born in 1988,Ph.D,lecturer,is a member of China Computer Federation.His main research interests include fault detection and VANETs.DING Fei,born in 1981,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include VANETs,distributed systems,big data modeling and analysis.
  • Supported by:
    Open Project of State Key Laboratory of Novel Software Technology(KFKT2021B21),Foundation of Jiangsu Provincial Double-Innovation Doctor Program(CZ016SC20010),Six Talent Peaks Project of Jiangsu Province(DZXX-008),China Postdoctoral Science Foundation(2019M661900),Jiangsu Postdoctoral Science Foundation,China(2019K026) and Nanjing University of Posts and Telecommunication Startup Foundation(NY219134,NY220028,NY219133).

摘要: 故障检测是构建容错系统的基础组件之一,可以有效保证车联网上的应用安全、可靠地执行。然而,车联网不同于传统移动自组织网络,一方面,车辆具有高速移动性且可能随时加入或者离开系统,容易造成网络环境多变;另一方面,车辆之间的链路也时常发生中断,容易造成消息丢失。为了解决以上问题,提出了一种基于航位推算的层次式的故障检测方法。在该故障检测方法中,利用航位推算模型去预测心跳消息的传输时间,同时考虑路侧单元(Roadside Unit,RSU)作为静态节点构建层次式的检测架构,从而改善车联网中故障检测的性能。通过NS2搭建仿真实验平台以进行验证,结果显示,相比对照的故障检测方法,新提出的故障检测方法在检测速度、检测准确性以及检测负载等方面均具有最好的表现。

关键词: 车联网, 故障检测, 航位推算, 高移动性, 容错

Abstract: Fault detection is one of the basic components of fault-tolerant system,which can ensure the safe and reliable implementation of applications on vehicular ad hoc networks.However,vehicular ad hoc networks are different from traditional mobile ad hoc networks.On the one hand,vehicles have high-speed mobility and may join or leave the system at any time,which is likely to make the network environment to be changeable.On the other hand,the links between vehicles are often interrupted due to environmental and equipment factors,which is likely to cause message loss.In order to solve the above problems,a hierarchical fault detection method based on dead reckoning is proposed.In this fault detection method,the dead reckoning model is used to predict the transmission time of heartbeat messages,and the roadside unit is considered as a static node to build a hierarchical detection architecture,so as to improve the performance of fault detection in the vehicular ad hoc networks.Using the NS2 to build the si-mulation experimental platform for performance verification,experimental results show that the proposed fault detection method is better than the comparative fault detection method in terms of detection speed,detection accuracy and detection overhead.

Key words: Vehicular ad hoc networks, Fault detection, Dead reckoning, High mobility, Fault tolerance

中图分类号: 

  • TP391
[1]BHOI S,KHILAR P.Self soft fault detection based routing protocol for vehicular ad hoc network in city environment[J].Wireless Networks,2016,22(1),1-21.
[2]KHAN A,ABOLHASAN M,WEI N,et al.A hybrid-fuzzy logic guided genetic algorithm(H-FLGA) approach for resource optimization in 5G VANETs[J].IEEE Transactions on Vehicular Technology,2019,68(7):6964-6974.
[3]ZHAO Z,GUARDALBEN L,KAIMZADEH M,et al.Mobility prediction-assisted over-the-top edge prefetching for hierarchical VANETs[J].IEEE Journal on Selected Areas in Communications,2018,36(8):1786-1801.
[4]CUI J,WEI L,ZHONG H,et al.Edge computing in VANETs-an efficient and privacy-preserving cooperative downloading scheme[J].IEEE Journal on Selected Areas in Communications,2020,38(6):1191-1204.
[5]CAO S,LEE V.A novel adaptive TDMA-based MAC protocol for VANETs[J].IEEE Communications Letters,2018,22(3):614-617.
[6]SINGH R,SALUJA K S.Graphical approach for V2V connectivity enhancement in clustering-based VANET[J].IEEE Wireless Communication Letters,2021,10(6):1217-1221.
[7]PATRA M,MURTHY C.Performance evaluation of jointplacement and sleep scheduling of grid-connected solar powered road side units in vehicular networks[J].IEEE Transactions on Green Communications and Networking,2018,2(4):1197-1209.
[8]XIAO L,LU X,XU D,et al.UAV relay in VANETs against smart jamming with reinforcement learning[J].IEEE Transactions on Vehicular Technology,2018,67(5):4087-4097.
[9]YANG F,HAN J,DING X,et al.Spectral efficiency optimization and interference management for multi-Hop D2D communications in VANETs[J].IEEE Transactions on Vehicular Technology,2020,69(6):6422-6436.
[10]LIN N,FU L,ZHAO L,et al.A novel multimodal collaborative drone-assisted VANET net-working model[J].IEEE Transactions on Wireless Communications,2020,19(7):4919-4933.
[11]CHEN J,WANG Z.Topology control in hybrid VLC/RF vehi-cular ad-hoc network[J].IEEE Transactions on Wireless Communications,2020,19(3):1965-1976.
[12]CHANDRA T,TOUEG S.Unreliable failure detectors for reliable distributed systems[J].Journal of the ACM,1996,43(2):225-267.
[13]CHEN W,TOUEG S,AGUILERA M K.On the quality of ser-vice of failure detectors[J].IEEE Transactions on Computers,2002,51(1):13-32.
[14]BENHAMIDA F Z,CHALLAL Y,KOUDIL M.Adaptive fai-lure detection in low power lossy wireless sensor networks[J].Journal of Network and Computer Applications,2014,45(4):168-180.
[15]ZHANG H,QIAN Z,LIU J,et al.Fault detection and repairing for intelligent connected vehicles based on dynamic bayesian network model[J].IEEE Internet of Things Journal,2018,5(4):2431-2440.
[16]LI F,SONG X,CHEN H,et al.Hierarchical routing for vehicular ad hoc networks via reinforcement learning[J].IEEE Transa-ctions on Vehicular Technology,2019,68(2):1852-1865.
[17]SHAREF T,ALSAQOURl A,ISMAIL M.Vehicular communication ad hoc routing protocols:A survey[J].Journal of Network and Computer Applications,2014,40(1):363-396.
[18]YU N,ZHAN X,ZHAO S,et al.A precise dead reckoning algorithm based on bluetooth and multiple sensors[J].IEEE Internet of Things Journal,2017,5(1):336-351.
[19]CHEN H,LI F,WANG Y.SoundMark:accurate indoor localization via peer-assisted dead reckoning[J].IEEE Internet of Things Journal,2018,5(6):4803-4815.
[20]SOTOMA I,MADEIRA E R.ADAPTATION-Algorithms toadaptive fault monitoring and their implementation on CORBA[C]//Proceedings of 3rd International Symposium on Distributed Objects and Applications.2001:219-228.
[21]FETZER C,RAYNAL M,TRONEL F.An adaptive failure detection protocol[C]//Proceedings of 2001 Pacific Rim International Symposium on Dependable Computing.2001:146-153.
[22]TOMSIC A,SENS P,GARCIA J,et al.2W-FD:A Failure Detector Algorithm with QoS[C]//Proceedings of 2015 IEEE International Parallel and Distributed Proceedingsessing Sympo-sium.2015:85-893.
[23]ALJERI N,ALMULLA M,BOUKERCHE A.An efficient fault detection and diagnosis protocol for vehicular networks[C]//Proceedings of ACM International Symposium on Design &Analysis of Intelligent Vehicular Networks & Applications.2013:23-29.
[24]SALFNER F,LENK M,MALEK M.A survey of online failure prediction methods[J].ACM Computing Surveys,2010,42(3):1-42.
[25]FELBER P,DEFAGO X,GUERRAOUI R,et al.Failure detectors as first class objects[C]//Proceedings of the International Symposium on Distributed Objects and Applications.1999:132-141.
[26]VAN R,MINSKY Y,HAYDEN M.A gossip-style failure detection service[C]//Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed Proceedings.2009:55-70.
[27]SNYDER S,CARNS P,JENKINS J,et al.A case for epidemic fault detection and group membership in HPC storage systems[C]//Proceedings of International Workshop on Performance Modeling,Benchmarking and Simulation of High Performance Computer Systems.2014:237-248.
[28]CAMBRUZZI E,FARINES J,MACEDO J,et al.An adaptivefailure detection system for vehicular ad-hoc networks[C]//Processing of IEEE Intelligent Vehicles Symposium.2010:603-608.
[29]CHEN H,LI F,WANG Y.Sound mark:accurate Indoor localization via peer-assisted dead reckoning[J].IEEE Internet of Things Journal,2018,5(6):4803-4815.
[30]PASK V.A magnetic ranging-aided dead-reckoning positioning system for pedestrian applications[J].IEEE Transactions on Instrumentation And Measurement,2017,66(5):953-963.
[1] 陈晶, 吴玲玲.
多源异构环境下的车联网大数据混合属性特征检测方法
Mixed Attribute Feature Detection Method of Internet of Vehicles Big Datain Multi-source Heterogeneous Environment
计算机科学, 2022, 49(8): 108-112. https://doi.org/10.11896/jsjkx.220300273
[2] 陈彦冰, 钟超然, 周超然, 薛凌妍, 黄海平.
基于医疗联盟链的跨域认证方案设计
Design of Cross-domain Authentication Scheme Based on Medical Consortium Chain
计算机科学, 2022, 49(6A): 537-543. https://doi.org/10.11896/jsjkx.220200139
[3] 李博, 向海昀, 张宇翔, 廖浩德.
面向食品溯源场景的PBFT优化算法应用研究
Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios
计算机科学, 2022, 49(6A): 723-728. https://doi.org/10.11896/jsjkx.210800018
[4] 冯了了, 丁滟, 刘坤林, 马科林, 常俊胜.
区块链BFT共识算法研究进展
Research Advance on BFT Consensus Algorithms
计算机科学, 2022, 49(4): 329-339. https://doi.org/10.11896/jsjkx.210700011
[5] 宋涛, 李秀华, 李辉, 文俊浩, 熊庆宇, 陈杰.
大数据时代下车联网安全加密认证技术研究综述
Overview of Research on Security Encryption Authentication Technology of IoV in Big Data Era
计算机科学, 2022, 49(4): 340-353. https://doi.org/10.11896/jsjkx.210400112
[6] 张海波, 张益峰, 刘开健.
基于NOMA-MEC的车联网任务卸载、迁移与缓存策略
Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC
计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157
[7] 王先圣, 严珂.
基于联邦学习的暖通空调系统故障检测与诊断
Fault Detection and Diagnosis of HVAC System Based on Federated Learning
计算机科学, 2022, 49(12): 74-80. https://doi.org/10.11896/jsjkx.220700280
[8] 王博, 华庆一, 舒新峰.
基于云平台日志的故障检测和复杂构件系统即时可靠性度量研究
Study on Anomaly Detection and Real-time Reliability Evaluation of Complex Component System Based on Log of Cloud Platform
计算机科学, 2022, 49(12): 125-135. https://doi.org/10.11896/jsjkx.220200106
[9] 朱宗武, 黄汝维.
基于高效全同态加密的安全多方计算协议
Secure Multi-party Computing Protocol Based on Efficient Fully Homomorphic Encryption
计算机科学, 2022, 49(11): 345-350. https://doi.org/10.11896/jsjkx.210900047
[10] 谢卓, 张志鸿, 李磊, 冯英杰, 陈静.
基于联盟链的实用拜占庭容错算法的改进
Improvement of PBFT Algorithm Based on Consortium Blockchain
计算机科学, 2022, 49(11): 360-367. https://doi.org/10.11896/jsjkx.210900178
[11] 薛艳芬, 高继梅, 范贵生, 虞慧群, 许亚杰.
边缘计算中基于能耗感知的容错协同任务执行算法
Energy-aware Fault-tolerant Collaborative Task Execution Algorithm in Edge Computing
计算机科学, 2021, 48(6A): 374-382. https://doi.org/10.11896/jsjkx.200900027
[12] 唐亮, 李飞.
基于决策树的车联网安全态势预测模型研究
Research on Forecasting Model of Internet of Vehicles Security Situation Based on Decision Tree
计算机科学, 2021, 48(6A): 514-517. https://doi.org/10.11896/jsjkx.200700158
[13] 俞建业, 戚湧, 王宝茁.
基于Spark的车联网分布式组合深度学习入侵检测方法
Distributed Combination Deep Learning Intrusion Detection Method for Internet of Vehicles Based on Spark
计算机科学, 2021, 48(6A): 518-523. https://doi.org/10.11896/jsjkx.200700129
[14] 徐佳庆, 胡小月, 唐付桥, 王强, 何杰.
基于随机森林的高性能互连网络阻塞故障检测
Detecting Blocking Failure in High Performance Interconnection Networks Based on Random Forest
计算机科学, 2021, 48(6): 246-252. https://doi.org/10.11896/jsjkx.201200142
[15] 易怡, 樊建席, 王岩, 刘钊, 董辉.
BCube在2-限制连通度下的容错路由算法
Fault-tolerant Routing Algorithm in BCube Under 2-restricted Connectivity
计算机科学, 2021, 48(6): 253-260. https://doi.org/10.11896/jsjkx.200900203
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!