计算机科学 ›› 2021, Vol. 48 ›› Issue (2): 55-63.doi: 10.11896/jsjkx.191100053
左剑凯1, 吴杰宏1, 陈嘉彤2, 刘泽源3, 李忠智1
ZUO Jian-kai1, WU Jie-hong1, CHEN Jia-tong2, LIU Ze-yuan3, LI Zhong-zhi1
摘要: 无人机编队对抗问题一直是科学研究的一个热点,但针对无人机群防御部署问题的相关研究较少。文中以防御型无人机对普通无人机(如民用、商用、侦查、巡航、勘探)的保护问题为背景,对已有的异构无人机编队的编码解码方案进行改进。从导弹飞行距离和非武装无人机的安全两个方面建立适应度函数,使用遗传算法对无人机防御编队进行优化。针对不同规模和不同队形的敌机编队,对我方无人机编队进行优化。求解结果表明,在不同的敌机编队中,遗传算法均能在30次迭代内以较快速度收敛于最优值,并给出相应的优化队形。最后通过概率效果评估,绘制了5种战况损失曲线,可以看出所设计的防御部署战略是有效的,我方无人机最大损失数量为6,最小损失数量为0,平均损失数量为3,平均损失率为18.75%。该方法对异构无人机群的防御部署研究具有一定的参考价值。
中图分类号:
[1] ZHAO K X,HUANG C Q,WEI Z L,et al.Estimation of Air Combat Situation of UAVs Based on Improved Decision Tree[J].Journal of Harbin Institute of Technology,2019,51(4):66-73. [2] LI S H,DING Y,GAO Z L.Aircraft maneuver decision making of drone based on intuitionistic fuzzy game[J].System Enginee-ring and Electronics,2019,41(5):1063-1070. [3] AKOPOV A S,BEKLARYA N L A,THAKUR M,et al.Parallel Multi-agent Real-coded Genetic Algorithm for Large-scale Black-box Single-objective Optimisation[J].Knowledge Based Systems,2019,174:103-122. [4] ZHA NG K S,WANG Z P.Research on Air Combat Formation Optimization Based on Genetic Simulated Annealing Algorithm[J].Journal of Northwestern Polytechnical University,2003(4):477-480. [5] XIA Q J,ZHANG A N,ZHANG Y Z.Large-scale formation air combat formation optimization algorithm[J].Control Theory & Applications,2010,27(10):1418-1422. [6] QIAN B,JIANG C S.Application of Genetic Algorithm in Air Combat Formation Optimization of Helicopter[J].Electronics Optics & Control,2008(1):6-9. [7] MULGUND S,HARPER K,KRISHNAKUMAR K,et al.Large-scale Air Combat Tactics Optimization Using Genetic Algorithms[J].Journal of Guidance,Control,and Dynamics,2001,24:140-142. [8] XIONG W,DING Q X,CHEN Z J,et al.Optimal allocationmethod of fleet formation based on genetic fuzzy clustering[J].Journal of Beijing University of Aeronautics and Astronautics,2008(2):193-196,214. [9] LUO D L,WANG B,GONGH J,et al.Collaborative multi-target attack decision based on SAGA[J].Journal of Harbin Institute of Technology,2007(7):1154-1158. [10] XING X J,XI A,YAN J G.Study on the Optimal Robust Control Method for Multi-UAV Cooperative Formation[J].Journal of Northwestern Polytechnical University,2013,31(5):722-726. [11] PU P,ZHANG J C,SUN X J.Research on Tactical Decision-making of Multi-machine Cooperative Multiple Target Assignment[J].Tactical Missile Technology,2007(2):57-61. [12] ZHANG K S.Research on Air Combat Formation Optimization Based on Genetic Algorithm[D].Shaanxi:Northwestern Polytechnical University,2003. [13] CHEN W,ZHANG Q M.Preliminary Study on Dynamic Analysis Model of Missile Structure under Explosive Shock Wave[J].Explosion and Shock,2009,29(2):199-204. [14] NAGATA T.A Multi-agent Based Micro-grid Operation Method Considering Charging and Discharging Strategies of Electric Vehi-cles[J].IEEE Transactions on Power and Energy,2018,138(7):598-604. [15] SHALASH N A,AHMAD A Z,JABER A S.Multi-agent Approach to Reliability Assessment of Power System Generation Using Fuzzy Logic[J].International Journal of Simulation:Systems,Science and Technology,2016,17(32). [16] LI C,WANG Y,ZHOU H,et al.Intelligent Decision-making Method for Air Combat Formation of Multi-Unmanned Combat Aircraft[J].Fire Control & Command Control,2018,43(7):26-31. [17] WANG W,WANG D,PENG Z H.Cooperative Learning Neural Network Output Feedback Control of Uncertain Nonlinear Multi-agent Systems Under Directed Topologies[J].International Journal of Systems Science,2017,48(12):2590-2598. [18] EZUGWU A E,FRINCU M E,ADEWUMI A O.Neural Network-based Multi-agent Approach for Scheduling in Distributed Systems[J].Concurrency Computation,2017,29(1):10. [19] JOLLY K G,SREERAMA K R,VIJAYAKUMAR R.Intelli-gent Task Planning and Action Selection of a Mobile Robot in a Multi-agent System through a Fuzzy Neural Network Approach[J].Engineering Applications of Artificial Intelligence,2010,23(6):923-933. [20] CHANG Y Z,LI Z W,KOU Y X,et al.A Method for Selecting the Formation of Air Combat in Uncertain Information[J].System Engineering and Electronics,2016,38(11):2552-2560. [21] XIAO B S,FANG Y W,XU Y S.Research on Coordinated Formation Target Assignment Model for beyond Visual Range Air Combat[J].Systems Engineering and Electronics,2010,32(7):1476-1479. [22] DIAO X H,FANG Y W,XIAO B S,et al.Task Allocation in Cooperative Air Combat Based on Multi-agent Coalition[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(9):1268-1275. [23] YE X D,CHEN B,LI P,et al.A Simulation-based Multi-agent Particle Swarm Optimization Approach for Supporting Dynamic Decision Making in Marine Oil Spill Responses[J].Ocean and Coastal Management,2019,172:128-136. [24] KUMAR R,SHARMA D,SADU A.A Hybrid Multi-agentBased Particle Swarm Optimization Algorithm for Economic Power Dispatch[J].International Journal of Electrical Power and Energy Systems,2011,33(1):115-123. [25] XU P,XIE G M,WEN J Y,et al.Event-driven reinforcement learning multi-agent formation control[J].Journal of Intelligent Systems,2019,14(1):93-98. [26] WANG X C.Research on multi-robot collaborative coordination based on reinforcement learning and clustering intelligent met hod[D].Harbin:Harbin Engineering University,2005. [27] ZHENG Y B,XI P X,WANG L L,et al.Multi-agent formation obstacle avoidance method based on artificial potential field method[J].Journal of Computer Applications,2018,38(12):3380-3384,3413. |
[1] | 熊丽琴, 曹雷, 赖俊, 陈希亮. 基于值分解的多智能体深度强化学习综述 Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization 计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112 |
[2] | 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军. 基于多智能体强化学习的端到端合作的自适应奖励方法 Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning 计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100 |
[3] | 杨浩雄, 高晶, 邵恩露. 考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题 Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery 计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005 |
[4] | 沈彪, 沈立炜, 李弋. 空间众包任务的路径动态调度方法 Dynamic Task Scheduling Method for Space Crowdsourcing 计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249 |
[5] | 吴善杰, 王新. 基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法 Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks 计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110 |
[6] | 王金恒, 单志龙, 谭汉松, 王煜林. 基于遗传优化PNN神经网络的网络安全态势评估 Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network 计算机科学, 2021, 48(6): 338-342. https://doi.org/10.11896/jsjkx.201200239 |
[7] | 郑增乾, 王锟, 赵涛, 蒋维, 孟利民. 带宽和时延受限的流媒体服务器集群负载均衡机制 Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster 计算机科学, 2021, 48(6): 261-267. https://doi.org/10.11896/jsjkx.200400131 |
[8] | 高枫越, 王琰, 朱铁兰. 有适应力的分布式状态估计方法 Resilient Distributed State Estimation Algorithm 计算机科学, 2021, 48(5): 308-312. https://doi.org/10.11896/jsjkx.200300117 |
[9] | 高帅, 夏良斌, 盛亮, 杜宏亮, 袁媛, 韩和同. 基于投影圆度和遗传算法的空间圆柱面拟合方法 Spatial Cylinder Fitting Based on Projection Roundness and Genetic Algorithm 计算机科学, 2021, 48(11A): 166-169. https://doi.org/10.11896/jsjkx.201100057 |
[10] | 姚泽玮, 林嘉雯, 胡俊钦, 陈星. 基于PSO-GA的多边缘负载均衡方法 PSO-GA Based Approach to Multi-edge Load Balancing 计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191 |
[11] | 高基旭, 王珺. 一种基于遗传算法的多边缘协同计算卸载方案 Multi-edge Collaborative Computing Unloading Scheme Based on Genetic Algorithm 计算机科学, 2021, 48(1): 72-80. https://doi.org/10.11896/jsjkx.200800088 |
[12] | 吉顺慧, 张鹏程. 基于支配关系的数据流测试用例生成方法 Test Case Generation Approach for Data Flow Based on Dominance Relations 计算机科学, 2020, 47(9): 40-46. https://doi.org/10.11896/jsjkx.200700021 |
[13] | 董明刚, 黄宇扬, 敬超. 基于遗传实例和特征选择的K近邻训练集优化方法 K-Nearest Neighbor Classification Training Set Optimization Method Based on Genetic Instance and Feature Selection 计算机科学, 2020, 47(8): 178-184. https://doi.org/10.11896/jsjkx.190700089 |
[14] | 梁正友, 何景琳, 孙宇. 一种用于微表情自动识别的三维卷积神经网络进化方法 Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition 计算机科学, 2020, 47(8): 227-232. https://doi.org/10.11896/jsjkx.190700009 |
[15] | 杨德成, 李凤岐, 王祎, 王胜法, 殷慧殊. 智能3D打印路径规划算法 Intelligent 3D Printing Path Planning Algorithm 计算机科学, 2020, 47(8): 267-271. https://doi.org/10.11896/jsjkx.190700184 |
|