计算机科学 ›› 2021, Vol. 48 ›› Issue (2): 55-63.doi: 10.11896/jsjkx.191100053

• 新型分布式计算技术与系统* 上一篇    下一篇

异构无人机编队防御及评估策略研究

左剑凯1, 吴杰宏1, 陈嘉彤2, 刘泽源3, 李忠智1   

  1. 1 沈阳航空航天大学计算机学院 沈阳110136
    2 沈阳航空航天大学航空发动机学院 沈阳110136
    3 沈阳航空航天大学航空宇航学院 沈阳110136
  • 收稿日期:2019-11-07 修回日期:2020-01-15 出版日期:2021-02-15 发布日期:2021-02-04
  • 通讯作者: 吴杰宏(wujiehong@sau.edu.cn)
  • 作者简介:sau_zjk@foxmail.com
  • 基金资助:
    航空科学基金(2018ZC54013);辽宁省教育厅创新人才基金(2018059);国家级大学生创新创业训练计划项目(201910143423)

Study on Heterogeneous UAV Formation Defense and Evaluation Strategy

ZUO Jian-kai1, WU Jie-hong1, CHEN Jia-tong2, LIU Ze-yuan3, LI Zhong-zhi1   

  1. 1 School of Computer Science,Shenyang Aerospace University,Shenyang 110136,China
    2 School of Aviation Engine,Shenyang Aerospace University,Shenyang 110136,China
    3 School of Aerospace,Shenyang Aerospace University,Shenyang 110136,China
  • Received:2019-11-07 Revised:2020-01-15 Online:2021-02-15 Published:2021-02-04
  • About author:ZUO Jian-kai,born in 1997,Ph.D student.His main research interests include machine learning,deep learning,pattern recognition and computer vision.
    WU Jie-hong,born in 1971,Ph.D,professor,prominent teacher.Her main research interests include correspondence security,collaborative obstacle avoi-dance,autonomous flocking control and power consumption optimization of unmanned autonomous systems.
  • Supported by:
    The Aeronautical Science Foundation of China(2018ZC54013),Innovative Talents Foundation of Education Department of Lianing Province(2018059) and National Innovation and Entrepreneurship Training Program for College Students(201910143423).

摘要: 无人机编队对抗问题一直是科学研究的一个热点,但针对无人机群防御部署问题的相关研究较少。文中以防御型无人机对普通无人机(如民用、商用、侦查、巡航、勘探)的保护问题为背景,对已有的异构无人机编队的编码解码方案进行改进。从导弹飞行距离和非武装无人机的安全两个方面建立适应度函数,使用遗传算法对无人机防御编队进行优化。针对不同规模和不同队形的敌机编队,对我方无人机编队进行优化。求解结果表明,在不同的敌机编队中,遗传算法均能在30次迭代内以较快速度收敛于最优值,并给出相应的优化队形。最后通过概率效果评估,绘制了5种战况损失曲线,可以看出所设计的防御部署战略是有效的,我方无人机最大损失数量为6,最小损失数量为0,平均损失数量为3,平均损失率为18.75%。该方法对异构无人机群的防御部署研究具有一定的参考价值。

关键词: 编队优化, 多智能体, 群体防御部署, 遗传算法, 战损评估

Abstract: The problem of UAV formation confrontation has always been a hot topic in scientific research,and there are few related studies on the deployment of UAV group defense.Based on the protection of defensive UAV against common UAV,such as civil,commercial,reconnaissance,cruise and exploration,the coding and decoding scheme of existing heterogeneous UAV formation is improved.The fitness function is established from the missile flight distance and the safety of unarmed drones,and the genetic algorithm is used to optimize the defense formation of the drone.According to the situation of enemy UAV of different sizes and various formations,the formation of our UAV is optimized.The solution results show that the genetic algorithm can converge to the optimal value in different enemy formations at a high speed within 30 iterations,and the corresponding optimized formation is given.Finally,by evaluating the probability effect and drawing the loss curve of five combat situations,it can be seen that the defense deployment strategy designed in this paper is effective.The maximum loss quantity of our UAVs is 6,minimum loss quantity is 0,average loss quantity is 3,and average loss rate is 18.75%.This method is of great significance for the research of UAV group defense deployment.

Key words: Battle damage assessment, Formation optimizationm, Genetic algorithm, Multi-agent, Swarm defense deployment

中图分类号: 

  • TP181
[1] ZHAO K X,HUANG C Q,WEI Z L,et al.Estimation of Air Combat Situation of UAVs Based on Improved Decision Tree[J].Journal of Harbin Institute of Technology,2019,51(4):66-73.
[2] LI S H,DING Y,GAO Z L.Aircraft maneuver decision making of drone based on intuitionistic fuzzy game[J].System Enginee-ring and Electronics,2019,41(5):1063-1070.
[3] AKOPOV A S,BEKLARYA N L A,THAKUR M,et al.Parallel Multi-agent Real-coded Genetic Algorithm for Large-scale Black-box Single-objective Optimisation[J].Knowledge Based Systems,2019,174:103-122.
[4] ZHA NG K S,WANG Z P.Research on Air Combat Formation Optimization Based on Genetic Simulated Annealing Algorithm[J].Journal of Northwestern Polytechnical University,2003(4):477-480.
[5] XIA Q J,ZHANG A N,ZHANG Y Z.Large-scale formation air combat formation optimization algorithm[J].Control Theory & Applications,2010,27(10):1418-1422.
[6] QIAN B,JIANG C S.Application of Genetic Algorithm in Air Combat Formation Optimization of Helicopter[J].Electronics Optics & Control,2008(1):6-9.
[7] MULGUND S,HARPER K,KRISHNAKUMAR K,et al.Large-scale Air Combat Tactics Optimization Using Genetic Algorithms[J].Journal of Guidance,Control,and Dynamics,2001,24:140-142.
[8] XIONG W,DING Q X,CHEN Z J,et al.Optimal allocationmethod of fleet formation based on genetic fuzzy clustering[J].Journal of Beijing University of Aeronautics and Astronautics,2008(2):193-196,214.
[9] LUO D L,WANG B,GONGH J,et al.Collaborative multi-target attack decision based on SAGA[J].Journal of Harbin Institute of Technology,2007(7):1154-1158.
[10] XING X J,XI A,YAN J G.Study on the Optimal Robust Control Method for Multi-UAV Cooperative Formation[J].Journal of Northwestern Polytechnical University,2013,31(5):722-726.
[11] PU P,ZHANG J C,SUN X J.Research on Tactical Decision-making of Multi-machine Cooperative Multiple Target Assignment[J].Tactical Missile Technology,2007(2):57-61.
[12] ZHANG K S.Research on Air Combat Formation Optimization Based on Genetic Algorithm[D].Shaanxi:Northwestern Polytechnical University,2003.
[13] CHEN W,ZHANG Q M.Preliminary Study on Dynamic Analysis Model of Missile Structure under Explosive Shock Wave[J].Explosion and Shock,2009,29(2):199-204.
[14] NAGATA T.A Multi-agent Based Micro-grid Operation Method Considering Charging and Discharging Strategies of Electric Vehi-cles[J].IEEE Transactions on Power and Energy,2018,138(7):598-604.
[15] SHALASH N A,AHMAD A Z,JABER A S.Multi-agent Approach to Reliability Assessment of Power System Generation Using Fuzzy Logic[J].International Journal of Simulation:Systems,Science and Technology,2016,17(32).
[16] LI C,WANG Y,ZHOU H,et al.Intelligent Decision-making Method for Air Combat Formation of Multi-Unmanned Combat Aircraft[J].Fire Control & Command Control,2018,43(7):26-31.
[17] WANG W,WANG D,PENG Z H.Cooperative Learning Neural Network Output Feedback Control of Uncertain Nonlinear Multi-agent Systems Under Directed Topologies[J].International Journal of Systems Science,2017,48(12):2590-2598.
[18] EZUGWU A E,FRINCU M E,ADEWUMI A O.Neural Network-based Multi-agent Approach for Scheduling in Distributed Systems[J].Concurrency Computation,2017,29(1):10.
[19] JOLLY K G,SREERAMA K R,VIJAYAKUMAR R.Intelli-gent Task Planning and Action Selection of a Mobile Robot in a Multi-agent System through a Fuzzy Neural Network Approach[J].Engineering Applications of Artificial Intelligence,2010,23(6):923-933.
[20] CHANG Y Z,LI Z W,KOU Y X,et al.A Method for Selecting the Formation of Air Combat in Uncertain Information[J].System Engineering and Electronics,2016,38(11):2552-2560.
[21] XIAO B S,FANG Y W,XU Y S.Research on Coordinated Formation Target Assignment Model for beyond Visual Range Air Combat[J].Systems Engineering and Electronics,2010,32(7):1476-1479.
[22] DIAO X H,FANG Y W,XIAO B S,et al.Task Allocation in Cooperative Air Combat Based on Multi-agent Coalition[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(9):1268-1275.
[23] YE X D,CHEN B,LI P,et al.A Simulation-based Multi-agent Particle Swarm Optimization Approach for Supporting Dynamic Decision Making in Marine Oil Spill Responses[J].Ocean and Coastal Management,2019,172:128-136.
[24] KUMAR R,SHARMA D,SADU A.A Hybrid Multi-agentBased Particle Swarm Optimization Algorithm for Economic Power Dispatch[J].International Journal of Electrical Power and Energy Systems,2011,33(1):115-123.
[25] XU P,XIE G M,WEN J Y,et al.Event-driven reinforcement learning multi-agent formation control[J].Journal of Intelligent Systems,2019,14(1):93-98.
[26] WANG X C.Research on multi-robot collaborative coordination based on reinforcement learning and clustering intelligent met hod[D].Harbin:Harbin Engineering University,2005.
[27] ZHENG Y B,XI P X,WANG L L,et al.Multi-agent formation obstacle avoidance method based on artificial potential field method[J].Journal of Computer Applications,2018,38(12):3380-3384,3413.
[1] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[2] 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军.
基于多智能体强化学习的端到端合作的自适应奖励方法
Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning
计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100
[3] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[4] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[5] 吴善杰, 王新.
基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法
Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks
计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110
[6] 王金恒, 单志龙, 谭汉松, 王煜林.
基于遗传优化PNN神经网络的网络安全态势评估
Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network
计算机科学, 2021, 48(6): 338-342. https://doi.org/10.11896/jsjkx.201200239
[7] 郑增乾, 王锟, 赵涛, 蒋维, 孟利民.
带宽和时延受限的流媒体服务器集群负载均衡机制
Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster
计算机科学, 2021, 48(6): 261-267. https://doi.org/10.11896/jsjkx.200400131
[8] 高枫越, 王琰, 朱铁兰.
有适应力的分布式状态估计方法
Resilient Distributed State Estimation Algorithm
计算机科学, 2021, 48(5): 308-312. https://doi.org/10.11896/jsjkx.200300117
[9] 高帅, 夏良斌, 盛亮, 杜宏亮, 袁媛, 韩和同.
基于投影圆度和遗传算法的空间圆柱面拟合方法
Spatial Cylinder Fitting Based on Projection Roundness and Genetic Algorithm
计算机科学, 2021, 48(11A): 166-169. https://doi.org/10.11896/jsjkx.201100057
[10] 姚泽玮, 林嘉雯, 胡俊钦, 陈星.
基于PSO-GA的多边缘负载均衡方法
PSO-GA Based Approach to Multi-edge Load Balancing
计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191
[11] 高基旭, 王珺.
一种基于遗传算法的多边缘协同计算卸载方案
Multi-edge Collaborative Computing Unloading Scheme Based on Genetic Algorithm
计算机科学, 2021, 48(1): 72-80. https://doi.org/10.11896/jsjkx.200800088
[12] 吉顺慧, 张鹏程.
基于支配关系的数据流测试用例生成方法
Test Case Generation Approach for Data Flow Based on Dominance Relations
计算机科学, 2020, 47(9): 40-46. https://doi.org/10.11896/jsjkx.200700021
[13] 董明刚, 黄宇扬, 敬超.
基于遗传实例和特征选择的K近邻训练集优化方法
K-Nearest Neighbor Classification Training Set Optimization Method Based on Genetic Instance and Feature Selection
计算机科学, 2020, 47(8): 178-184. https://doi.org/10.11896/jsjkx.190700089
[14] 梁正友, 何景琳, 孙宇.
一种用于微表情自动识别的三维卷积神经网络进化方法
Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition
计算机科学, 2020, 47(8): 227-232. https://doi.org/10.11896/jsjkx.190700009
[15] 杨德成, 李凤岐, 王祎, 王胜法, 殷慧殊.
智能3D打印路径规划算法
Intelligent 3D Printing Path Planning Algorithm
计算机科学, 2020, 47(8): 267-271. https://doi.org/10.11896/jsjkx.190700184
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!