计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 50-57.doi: 10.11896/jsjkx.241100176

• 高性能计算 • 上一篇    下一篇

优化器对神经网络力场性能的影响与分析

李恩吉, 胡思宇, 谭光明, 贾伟乐   

  1. 中国科学院计算技术研究所处理器芯片全国重点实验室 北京 100190
    中国科学院大学 北京 100190
  • 收稿日期:2024-11-28 修回日期:2025-03-03 出版日期:2025-05-15 发布日期:2025-05-12
  • 通讯作者: 贾伟乐(jiaweile@ict.ac.cn)
  • 作者简介:(lienji23s@ict.ac.cn)
  • 基金资助:
    中国科学院战略性先导科技专项资助(XDB0500102);国家自然科学基金(92270206,T2125013,62372435,62032023,61972377,61972380,T2293702);中国科学院青年基础研究项目(YSBR-005);国家创新人才博士后计划(BX20240383)

Impact and Analysis of Optimizers on the Performance of Neural Network Force Fields

LI Enji, HU Siyu, TAN Guangming, JIA Weile   

  1. State Key Lab of Processors,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China
    University of Chinese Academy of Sciences,Beijing 100190,China
  • Received:2024-11-28 Revised:2025-03-03 Online:2025-05-15 Published:2025-05-12
  • About author:
    LI Enji,born in 1994,master.His main research interests include machine learning and molecular dynamics simulations.
    JIA Weile,born in 1985.Ph.D,resear-cher.His main research interests include AI4Science,HPC and AI.
  • Supported by:
    Strategic Priority Research Program of Chinese Academy of Sciences(XDB0500102), National Natural Science Foundation of China(92270206,T2125013,62372435,62032023,61972377,61972380,T2293702),CAS Project for Young Scientists in Basic Research(YSBR-005) and China National Postdoctoral Program for Innovative Talents(BX20240383).

摘要: 分子动力学模拟是一种广泛应用于多个学科(如材料科学、计算化学等)的关键研究方法。近年来,随着计算能力的提升、神经网络模型的发展以及第一性原理数据的增加,神经网络力场模型已经展现出高精度的预测能力。目前存在多种神经网络力场模型的训练算法,而神经网络力场模型处于一个快速迭代的阶段,当前仍然缺乏神经网络力场模型及与之适配的优化器的指导建议。选取3种有代表性的神经网络力场模型和目前3种用于神经网络力场模型上的优化算法,在4个真实数据集上进行测试和评估,分析影响其收敛性的原因。设计实验对其进行全方位的评估,包括模型参数量对优化器的影响,神经网络宽度对收敛性的影响,以及模型训练时间与优化器的关联等。文中工作可以针对神经网络力场模型,给出优化器算法的建议。

关键词: 分子动力学模拟, 神经网络, 力场训练, 优化器

Abstract: Molecular dynamics(MD) simulation is widely used in various fields,such as materials science and computational chemistry.In recent years,with the improvement in computational power,the development of neural network models,and the accumulation in first-principle data,neural network force field(NNFF) models have demonstrated high predictive accuracy.Curren-tly,there are multiple training algorithms available for NNFF models,and these models are undergoing rapid iteration.However,there remains a lack of guidance on NNFF models and their compatible optimizers.This paper selects three representative NNFF models and the three most commonly used optimization algorithms for these models,testing and evaluating them on four real-world datasets to analyze factors affecting their convergence.We have designed numerous experiments for a comprehensive evaluation,including the impact of model parameter size on the optimizer,the influence of model depth and width on convergence,and the relationship between model training time and the optimizer.Our work provides recommendations for optimizer algorithms specific to NNFF models.

Key words: Molecular dynamics simulations, Neural networks, Force field, Optimizer

中图分类号: 

  • TP391
[1]ENGEL E.Density functional theory[M].Springer,2011.
[2]ZEPEDA-NÚÑEZ L,CHEN Y,ZHANG J,et al.Deep density:circumventing thekohn-sham equations via symmetry preserving neural networks[J].arXiv:1912.00775,2019.
[3]HAFNER J.Ab-initio simulations of materials usingvasp:Densi-tyfunctional theory and beyond[J].Journal of Computational Chemistry,2008,29(13):2044-2078.
[4]GIANNOZZI P,ANDREUSSI O,BRUMME T,et al.Advanced capabilities for materials modelling with quantum espresso[J].Journal of Physics:Condensed Matter,2017,29(46):465901.
[5]JIA W,FU J,CAO Z,et al.Fast plane wave density functional theory molecular dynamics calculations on multi-gpu machines[J].Journal of Computational Physics,2013,251:102-115.
[6]KOURA K,MATSUMOTO H.Variable soft sphere molecular model for inverse-power-law orlennard-jones potential[J].Phy-sics of Fluids A:Fluid Dynamics,1991,3(10):2459-2465.
[7]FOILES S,BASKES M,DAW M S.Embedded-atom-methodfunctions for thefcc metals cu,ag,au,ni,pd,pt,and their alloys[J].Physical Review B,1986,33(12):7983.
[8]SENFTLE T P,HONG S,ISLAM M M,et al.The reaxff reactive forcefield:development,applications and future directions[J].Computational Materials,2016,2(1):1-14.
[9]NI B,LEE K H,SINNOTT S B.A reactive empirical bond order(REBO) potential for hydrocarbon-oxygen interactions[J].Journal of Physics:Condensed Matter,2004,16(41):7261.
[10]NGUYEN T D.Gpu-accelerated tersoff potentials for massively parallel molecular dynamics simulations[J].Computer Physics Communications,2017,212:113-122.
[11]HUANG Y,KANG J,GODDARD III W A,et al.Density functional theory based neural network force fields from energy decompositions[J].Physical Review B,2019,99(6):064103.
[12]THOMPSON A,SWILER L,TROTT C,et al.Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials[J].Journal of Computational Phy-sics,2015,285:316-330.
[13]LEE K,YOO D,JEONG W,et al.Simple-nn:An efficient package for training and executing neural-network interatomic potentials[J].Computer Physics Communications,2019,242:95-103.
[14]BEHLER J.Representing potential energy surfaces by high-dimensional neural network potentials[J].Journal of Physics:Condensed Matter,2014,26(18):183001.
[15]WANG H,ZHANG L,HAN J,et al.Deepmd-kit:A deep learning package for many-body potential energy representation and molecular dynamics[J].Computer Physics Communications,2018,228:178-184.
[16]FAN Z,WANG Y,YING P,et al.GPUMD:A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations[J].The Journal of Chemical Physics,2022,157(11):114801.
[17]DAI H,MACBETH C.Effects of learning parameters on lear-ning procedure and performance of abpnn[J].Neural networks,1997,10(8):1505-1521.
[18]SMITH J S,ISAYEV O,ROITBERG A E.Ani-1:an extensible neural network potential withdft accuracy at force field computational cost[J].Chemical science,2017,8(4):3192-3203.
[19]SCHÜTT K,UNKE O,GASTEGGER M.Equivariant message passing for the prediction of tensorial properties and molecularspectra[C]//International Conference on Machine Learning.PMLR,2021:9377-9388.
[20]BATZNER S,MUSAELIAN A,SUN L,et al.E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials[J].Nature Communications,2022,13(1):2453.
[21]HAGHIGHATLARI M,LI J,GUAN X,et al.Newtonnet:anewtonian message passing network for deep learning of inte-ratomic potentials and forces[J].Digital Discovery,2022,1(3):333-343.
[22]JIA W,WANG H,CHEN M,et al.Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning[C]//SC20:International Conference for High Performance Computing,Networking,Storage and Analysis.IEEE,2020:1-14.
[23]KINGMA D,BA J.Adam:A method for stochastic optimization[J].arXiv.1412.6980,2014.
[24]HU S,ZHANG W,SHA Q,et al.Rlekf:An optimizer for deep potential with ab initio accuracy[C]//Proceedings of the AAAI Conference on Artificial Intelligence:volume 37.2023:7910-7918.
[25]HU S,ZHAO T,SHA Q,et al.Training onedeepmd model in minutes:a step towards online learning[C]//PPoPP '24:Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming.New York,NY,USA:Association for Computing Machinery,2024:257-269.
[26]SCHAUL T,GLASMACHERS T,SCHMIDHUBER J.Highdimensions and heavy tails for natural evolution strategies[C]//Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation(GECCO'11).New York,NY,USA:Association for Computing Machinery,2011:845-852.
[27]LAMBORA A,GUPTA K,CHOPRA K.Genetic algorithm- a literature review[C]//2019 International Conference on Machine Learning,Big Data,Cloud and Parallel Computing(COMITCon).2019:380-384.
[28]PIEPER A,KREUTZER M,ALVERMANN A,et al.High-performance implementation ofchebyshev filter diagonalization for interior eigenvalue computations[J].Journal of Computational Physics,2016,325:226-243.
[29]ZAVERKIN V,HOLZMÜLLER D,STEINWART I,et al.Fast and sample-efficient interatomic neural network potentials for molecules and materials based on gaussian moments[J].Journal of Chemical Theory and Computation,2021,17(10):6658-6670.
[30]NISHIJIMA T.Universal approximation theorem for neuralnetworks[J].arXiv:2102.10993,2021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!