Computer Science ›› 2025, Vol. 52 ›› Issue (5): 50-57.doi: 10.11896/jsjkx.241100176
• High Performance Computing • Previous Articles Next Articles
LI Enji, HU Siyu, TAN Guangming, JIA Weile
CLC Number:
[1]ENGEL E.Density functional theory[M].Springer,2011. [2]ZEPEDA-NÚÑEZ L,CHEN Y,ZHANG J,et al.Deep density:circumventing thekohn-sham equations via symmetry preserving neural networks[J].arXiv:1912.00775,2019. [3]HAFNER J.Ab-initio simulations of materials usingvasp:Densi-tyfunctional theory and beyond[J].Journal of Computational Chemistry,2008,29(13):2044-2078. [4]GIANNOZZI P,ANDREUSSI O,BRUMME T,et al.Advanced capabilities for materials modelling with quantum espresso[J].Journal of Physics:Condensed Matter,2017,29(46):465901. [5]JIA W,FU J,CAO Z,et al.Fast plane wave density functional theory molecular dynamics calculations on multi-gpu machines[J].Journal of Computational Physics,2013,251:102-115. [6]KOURA K,MATSUMOTO H.Variable soft sphere molecular model for inverse-power-law orlennard-jones potential[J].Phy-sics of Fluids A:Fluid Dynamics,1991,3(10):2459-2465. [7]FOILES S,BASKES M,DAW M S.Embedded-atom-methodfunctions for thefcc metals cu,ag,au,ni,pd,pt,and their alloys[J].Physical Review B,1986,33(12):7983. [8]SENFTLE T P,HONG S,ISLAM M M,et al.The reaxff reactive forcefield:development,applications and future directions[J].Computational Materials,2016,2(1):1-14. [9]NI B,LEE K H,SINNOTT S B.A reactive empirical bond order(REBO) potential for hydrocarbon-oxygen interactions[J].Journal of Physics:Condensed Matter,2004,16(41):7261. [10]NGUYEN T D.Gpu-accelerated tersoff potentials for massively parallel molecular dynamics simulations[J].Computer Physics Communications,2017,212:113-122. [11]HUANG Y,KANG J,GODDARD III W A,et al.Density functional theory based neural network force fields from energy decompositions[J].Physical Review B,2019,99(6):064103. [12]THOMPSON A,SWILER L,TROTT C,et al.Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials[J].Journal of Computational Phy-sics,2015,285:316-330. [13]LEE K,YOO D,JEONG W,et al.Simple-nn:An efficient package for training and executing neural-network interatomic potentials[J].Computer Physics Communications,2019,242:95-103. [14]BEHLER J.Representing potential energy surfaces by high-dimensional neural network potentials[J].Journal of Physics:Condensed Matter,2014,26(18):183001. [15]WANG H,ZHANG L,HAN J,et al.Deepmd-kit:A deep learning package for many-body potential energy representation and molecular dynamics[J].Computer Physics Communications,2018,228:178-184. [16]FAN Z,WANG Y,YING P,et al.GPUMD:A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations[J].The Journal of Chemical Physics,2022,157(11):114801. [17]DAI H,MACBETH C.Effects of learning parameters on lear-ning procedure and performance of abpnn[J].Neural networks,1997,10(8):1505-1521. [18]SMITH J S,ISAYEV O,ROITBERG A E.Ani-1:an extensible neural network potential withdft accuracy at force field computational cost[J].Chemical science,2017,8(4):3192-3203. [19]SCHÜTT K,UNKE O,GASTEGGER M.Equivariant message passing for the prediction of tensorial properties and molecularspectra[C]//International Conference on Machine Learning.PMLR,2021:9377-9388. [20]BATZNER S,MUSAELIAN A,SUN L,et al.E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials[J].Nature Communications,2022,13(1):2453. [21]HAGHIGHATLARI M,LI J,GUAN X,et al.Newtonnet:anewtonian message passing network for deep learning of inte-ratomic potentials and forces[J].Digital Discovery,2022,1(3):333-343. [22]JIA W,WANG H,CHEN M,et al.Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning[C]//SC20:International Conference for High Performance Computing,Networking,Storage and Analysis.IEEE,2020:1-14. [23]KINGMA D,BA J.Adam:A method for stochastic optimization[J].arXiv.1412.6980,2014. [24]HU S,ZHANG W,SHA Q,et al.Rlekf:An optimizer for deep potential with ab initio accuracy[C]//Proceedings of the AAAI Conference on Artificial Intelligence:volume 37.2023:7910-7918. [25]HU S,ZHAO T,SHA Q,et al.Training onedeepmd model in minutes:a step towards online learning[C]//PPoPP '24:Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming.New York,NY,USA:Association for Computing Machinery,2024:257-269. [26]SCHAUL T,GLASMACHERS T,SCHMIDHUBER J.Highdimensions and heavy tails for natural evolution strategies[C]//Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation(GECCO'11).New York,NY,USA:Association for Computing Machinery,2011:845-852. [27]LAMBORA A,GUPTA K,CHOPRA K.Genetic algorithm- a literature review[C]//2019 International Conference on Machine Learning,Big Data,Cloud and Parallel Computing(COMITCon).2019:380-384. [28]PIEPER A,KREUTZER M,ALVERMANN A,et al.High-performance implementation ofchebyshev filter diagonalization for interior eigenvalue computations[J].Journal of Computational Physics,2016,325:226-243. [29]ZAVERKIN V,HOLZMÜLLER D,STEINWART I,et al.Fast and sample-efficient interatomic neural network potentials for molecules and materials based on gaussian moments[J].Journal of Chemical Theory and Computation,2021,17(10):6658-6670. [30]NISHIJIMA T.Universal approximation theorem for neuralnetworks[J].arXiv:2102.10993,2021. |
[1] | WEI Xiaohui, GUAN Zeyu, WANG Chenyang, YUE Hengshan, WU Qi. Hardware-Software Co-design Fault-tolerant Strategies for Systolic Array Accelerators [J]. Computer Science, 2025, 52(5): 91-100. |
[2] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[3] | WANG Liming, ZHONG Guomin, SUN Mingxuan, HE Xiongxiong. Finitely-valued Terminal Zeroing Neural Networks with Application to Robotic Motion Planning [J]. Computer Science, 2025, 52(5): 270-280. |
[4] | WANG Dongzhi, LIU Yan, GUO Bin, YU Zhiwen. Edge-side Federated Continuous Learning Method Based on Brain-like Spiking Neural Networks [J]. Computer Science, 2025, 52(3): 326-337. |
[5] | LIN Zheng, LIU Sicong, GUO Bin, DING Yasan, YU Zhiwen. Adaptive Operator Parallel Partitioning Method for Heterogeneous Embedded Chips in AIoT [J]. Computer Science, 2025, 52(2): 299-309. |
[6] | ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161. |
[7] | CHENG Xuefeng, DONG Minggang. Dynamic Multi-objective Optimization Algorithm Based on RNN Information Accumulation [J]. Computer Science, 2024, 51(8): 333-344. |
[8] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[9] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
[10] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[11] | YU Mingyang, LI Ting, XU Jing. Adaptive Grey Wolf Optimizer Based on IMQ Inertia Weight Strategy [J]. Computer Science, 2024, 51(7): 354-361. |
[12] | GAO Yang, CAO Yangjie, DUAN Pengsong. Lightweighting Methods for Neural Network Models:A Review [J]. Computer Science, 2024, 51(6A): 230600137-11. |
[13] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[14] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[15] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
|