计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 177-181.
王晓, 邹泽伟, 李勃勃, 王静
WANG Xiao, ZOU Ze-wei, LI Bo-bo, WANG Jing
摘要: 随着国内对河流、湖泊和海洋近岸浅水区域水下工作的深入开展,潜水员进行水下打捞、定位以及勘探等水下工程建设变得意义重大。本实验室开发的专利产品TKIS-I头盔式彩色图像声呐获得中国海军航行保障部认可,目前已有20多台服务于部队并持续获得部队订货。但是,在复杂的水下环境中,潜水员进行水下作业具有较大的风险,所以期望今后能利用水下机器人实现自动水下目标检测,从而把潜水员从危险的复杂水下活动中解放出来。为此,文中针对声呐图像的特点,在颜色、形状、纹理3个方面分别采取了HSV颜色空间、梯度直方图(HOG)、局部二值模式(LBP)的特征提取方法,并且改进了多特征融合的方式,使用优化后的支持向量机(SVM)进行分类,旨在快速检测出水下目标,为以后水下机器人的自动目标检测奠定基础。
中图分类号:
[1]谭晓岚.论海洋经济发展的总体趋势[J].海洋开发与管理,2009,26(7):12-16. [2]DALAL N,TRIGGS B.Histograms of Oriented Gradients for Human Detection[C]∥Proceedings of the IEEE Computer Socie-ty Conference on Computer Vision and Pattern Recognition.IEEE,2005:886-893. [3]OJALA T,PIETIKAINEN M,MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [4]FELZENSZWALB P,GIRSHICK R,MCALLESTER D,et al.Object detection with discriminatively trained part based models[J].IEEE Transactions on Pattern Analsis and Machine Intelligence,2010,32(9):1627-1645. [5]WANG X,HAN T X,YAN S.An HOG-LBP human detector with partial occlusion handling[C]∥2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:32-39. [6]CANNY J.A Computational Approach to Edge Detection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8(6):43-57. [7]LOWE D G.Distinctive image features from scale-invariant key points [J].International Journal of Computer Vision,2004,60(2):91-110. [8]BELONGIE S,MALIK J,PUIICHA J.Shape context:a new descriptor for shape matching and object recognition[C]∥INPS’00.Cambridge:MIT press,2000:831-837. [9]WU B,NEVATIA R.Detection of multiple,partially occluded humans in a single image by bayesian combination of edgelet part detectors[C]∥Tenth IEEE International Conference on Computer Vision,2005(ICCV 2005).IEEE,2005:90-97. [10]BELL J M,PETILLOT Y R,LEBART K,et al.Target recognition in synthetic aperture and highresolution sidescan sonar[C]∥2006 IET Seminar on High Resolution Imaging and Target Classification.IET,2006:99-106. [11]BLONDEL P.The Handbook of Sidescan Sonar[M]∥Berlin:Springer,2009. [12]BENGIO Y,LECUN Y.Scaling learning algorithms towards ai[J].Large-scale Kernel Machines,2007,34(5):1-41. [13]BENGIO Y.Learning deep architectures for ai[J].Foundations and trends in Machine Learning,2009,2(1):1-127. [14]ANZAI Y.Pattern recognition and machine learning[M]. Springer,2012. |
[1] | 单晓英, 任迎春. 基于改进麻雀搜索优化支持向量机的渔船捕捞方式识别 Fishing Type Identification of Marine Fishing Vessels Based on Support Vector Machine Optimized by Improved Sparrow Search Algorithm 计算机科学, 2022, 49(6A): 211-216. https://doi.org/10.11896/jsjkx.220300216 |
[2] | 郁舒昊, 周辉, 叶春杨, 王太正. SDFA:基于多特征融合的船舶轨迹聚类方法研究 SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion 计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253 |
[3] | 陈景年. 一种适于多分类问题的支持向量机加速方法 Acceleration of SVM for Multi-class Classification 计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149 |
[4] | 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真. 一种基于支持向量机的主动度量学习算法 Active Metric Learning Based on Support Vector Machines 计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034 |
[5] | 邢云冰, 龙广玉, 胡春雨, 忽丽莎. 基于SVM的类别增量人体活动识别方法 Human Activity Recognition Method Based on Class Increment SVM 计算机科学, 2022, 49(5): 78-83. https://doi.org/10.11896/jsjkx.210400024 |
[6] | 李鹏祖, 李瑶, Ibegbu Nnamdi JULIAN, 孙超, 郭浩, 陈俊杰. 基于多特征融合的重叠组套索脑功能超网络构建及分类 Construction and Classification of Brain Function Hypernetwork Based on Overlapping Group Lasso with Multi-feature Fusion 计算机科学, 2022, 49(5): 206-211. https://doi.org/10.11896/jsjkx.210300049 |
[7] | 武玉坤, 李伟, 倪敏雅, 许志骋. 单类支持向量机融合深度自编码器的异常检测模型 Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder 计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142 |
[8] | 瞿中, 陈雯. 基于空洞卷积和多特征融合的混凝土路面裂缝检测 Concrete Pavement Crack Detection Based on Dilated Convolution and Multi-features Fusion 计算机科学, 2022, 49(3): 192-196. https://doi.org/10.11896/jsjkx.210100164 |
[9] | 牛富生, 郭延哺, 李维华, 刘文洋. 基于序列特征融合的蛋白质可溶性预测 Protein Solubility Prediction Based on Sequence Feature Fusion 计算机科学, 2022, 49(1): 285-291. https://doi.org/10.11896/jsjkx.201100117 |
[10] | 侯春萍, 赵春月, 王致芃. 基于自反馈最优子类挖掘的视频异常检测算法 Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining 计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146 |
[11] | 郭福民, 张华, 胡瑢华, 宋岩. 一种基于表面肌电信号的腕部肌力估计方法研究 Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals 计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021 |
[12] | 卓雅倩, 欧博. 噪声环境下的人脸防伪识别算法研究 Face Anti-spoofing Algorithm for Noisy Environment 计算机科学, 2021, 48(6A): 443-447. https://doi.org/10.11896/jsjkx.200900207 |
[13] | 雷剑梅, 曾令秋, 牟洁, 陈立东, 王淙, 柴勇. 基于整车EMC标准测试和机器学习的反向诊断方法 Reverse Diagnostic Method Based on Vehicle EMC Standard Test and Machine Learning 计算机科学, 2021, 48(6): 190-195. https://doi.org/10.11896/jsjkx.200700204 |
[14] | 吕金娜, 邢春玉, 李莉. 基于多特征融合的细粒度视频人物关系抽取 Video Character Relation Extraction Based on Multi-feature Fusion and Fine-granularity Analysis 计算机科学, 2021, 48(4): 117-122. https://doi.org/10.11896/jsjkx.200800160 |
[15] | 栾晓, 李晓双. 基于多特征融合的人脸活体检测算法 Face Anti-spoofing Algorithm Based on Multi-feature Fusion 计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181 |
|