计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 380-387.doi: 10.11896/jsjkx.231200168
• 信息安全 • 上一篇
闫廷聚, 曹琰, 王依菁
YAN Tingju, CAO Yan, WANG Yijing
摘要: 针对现有低功耗蓝牙(BLE)欺骗攻击检测技术准确率低的问题,提出了一种基于异常指纹的BLE欺骗攻击检测技术,将攻击者的射频指纹作为异常数据,把欺骗攻击检测建模为异常检测问题;设计了一种基于深度支持向量描述(Deep Support Vector Data Description,DeepSVDD)的异常指纹检测模型——RFFAD_DeepSVDD,并使用残差单元构建网络模型,有效缓解了机器学习异常检测算法非线性特征提取不足的问题。采用预训练自编码器获取最优初始化参数,极大增强了模型边界决策能力。在异常检测实验中,该模型准确率达到95.47%,相比基于机器学习的异常检测模型平均提升8.92%;在欺骗攻击检测实验中,该方法相比现有欺骗攻击检测技术在攻击节点运动与静止状态下均表现出更好的性能,能够准确检测并识别出中间人攻击、冒充攻击、重连接欺骗攻击3种欺骗攻击。
中图分类号:
[1]MELAMED T.An active man-in-the-middle attack on bluetooth smart devices[J].Safety and Security Studies,2018,8(2):200-211. [2]OLIFF W,FILIPPOUPOLITIS A,LOUKAS G.Evaluating the impact of malicious spoofing attacks on Bluetooth low energy based occupancy detection systems[C]//2017 IEEE 15th International Conference on Software Engineering Research,Management and Applications(SERA).IEEE,2017:379-385. [3]WU J,NAN Y,KUMAR V,et al.{BLESA}:Spoofing attacksagainst reconnections in bluetooth low energy[C]//14th USENIX Workshop on Offensive Technologies(WOOT 20).2020. [4]XU W,TRAPPE W,ZHANG Y,et al.The feasibility of launching and detecting jamming attacks in wireless networks[C]//Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing.2005:46-57. [5]YURDAGUL M A,SENCAR H T.BLEKeeper:Response Time Behavior Based Man-In-The-Middle Attack Detection[C]//2021 IEEE Security and Privacy Workshops(SPW).IEEE,2021:214-220. [6]WU J,NAN Y,KUMAR V,et al.{BlueShield}:Detecting spoofing attacks in bluetooth low energy networks[C]//23rd International Symposium on Research in Attacks,Intrusions and Defenses(RAID 2020).2020:397-411. [7]ZHOU X,HU A,LI G,et al.A robust radio-frequency fingerprint extractionscheme for practical device recognition[J].IEEE Internet of Things Journal,2021,8(14):11276-11289. [8]SHEN G,ZHANG J,MARSHALL A,et al.Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J].IEEE Transactions on Information Forensics and Security,2022,17:774-787. [9]ZHANG J,SHEN G,SAAD W,et al.Radio Frequency Fingerprint Identification for Device Authentication in the Internet of Things[J].IEEE Communications Magazine,2023,61(10):110-115. [10]TIAN Q,LIN Y,GUO X,et al.New security mechanisms ofhigh-reliability IoT communication based on radio frequency fingerprint[J].IEEE Internet of Things Journal,2019,6(5):7980-7987. [11]NILSSON D,YAN W.Identifying Bluetooth Low Energy Devices[C]//Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.2021:375-376. [12]NILSSON D.Identifying Bluetooth Low Energy Devices viaPhysical-Layer Hardware Impairments[J/OL].https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1648267&dswid=-1696. [13]TU Y,ZHANG Z,LI Y,et al.Research on the Internet ofThings device recognition based on RF-fingerprinting[J].IEEE Access,2019,7:37426-37431. [14]ZHANG X,HUANG Y,TIAN Y,et al.Noise-like Features Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder[J].IEEE Sensors Journal,2023,23(20):25473-25486. [15]QI L,YANG Y,ZHOU X,et al.Fast anomaly identificationbased on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0[J].IEEE Transactions on Industrial Informatics,2021,18(9):6503-6511. [16]HWANG C,LEE T.E-SFD:Explainable sensor fault detection in the ICS anomaly detection system[J].IEEE Access,2021,9:140470-140486. [17]SARMADI H,KARAMODIN A.A novel anomaly detectionmethod based on adaptive Mahalanobis-squared distance and one-class kNNrule for structural health monitoring under environmental effects[J].Mechanical Systems and Signal Proces-sing,2020,140:106495. [18]XU H,PANG G,WANG Y,et al.Deep isolation forest for anomaly detection[C]//IEEE Transactions on Knowledge and Data Engineering.2023:1-14. [19]LI X,ZHANG H,MIAO Y,et al.Can bus messages abnormal detection using improved svdd in internet of vehicles[J].IEEE Internet of Things Journal,2021,9(5):3359-3371. [20]CHALAPATHY R,MENON A K,CHAWLA S.Anomaly detection using one-class neural networks[J].arXiv:1802.06360,2018. [21]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.Deepone-classclassification[C]//International Conference on Machine Learning.PMLR,2018:4393-4402. [22]OZA P,PATEL V M.One-class convolutional neural network[J].IEEE Signal Processing Letters,2018,26(2):277-281. [23]ERFANI M,SHOELEH F,GHORBANI A A.Financial frauddetection using deep support vector data description[C]//2020 IEEE International Conference on Big Data(Big Data).IEEE,2020:2274-2282. [24]CHEN X,CAO C,MAI J.Network anomaly detection based on deep support vector data description[C]//2020 5th IEEE International Conference on Big Data Analytics(ICBDA).IEEE,2020:251-255. [25]Konstantin Tcholokachvili,Damien Cauquil.GitHub - DigitalSecurity/btlejuice:BtleJuice Bluetooth Smart(LE) Man-in-the-Middle framework[EB/OL].[2023-12-22].https://github.com/DigitalSecurity/btlejuice. [26]BINBUSAYYIS A,VAIYAPURI T.Unsupervised deep lear-ning approach for network intrusion detection combining convolutional autoencoder and one-class SVM[J].Applied Intelligence,2021,51(10):7094-7108. [27]YANG J,YANG X,ZHANG Z.A High-dimensional Anomaly Detection Algorithm Based on IForest with Autoencoder[C]//2022 4th International Conference on Data-driven Optimization of Complex Systems(DOCS).IEEE,2022:1-5. |
|