Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240800142-9.doi: 10.11896/jsjkx.240800142
• Big Data & Data Science • Previous Articles Next Articles
LI Pengyan, WANG Baohui, YE Zihao
CLC Number:
[1]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [2]SUN Z,GUO Q,YANG J,et al.Research commentary on re-commendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879. [3]FAN W,MA Y,LI Q,et al.Graph Neural Networks for Social Recommendation[C]//The World Wide Web Conference.2019:417-426. [4]GUO Z,WANG H.A Deep Graph NeuralNetwork-BasedMechanism for Social Recommendations[J].IEEE Transactions on Industrial Informatics,2020,17(4):2776-2783. [5]WU L,YANG Y,ZHANG K,et al.Joint item recommendation and attribute inference:An adaptive graph convolutional network approach[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:679-688. [6]DONG B,ZHU Y,LI L,et al.Hybrid collaborative recommendation of co-embedded item attributes and graph features[J].Neurocomputing,2021,442:307-316. [7]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagatinguser preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.2018:417-426. [8]TANG X,WANG T,YANG H,et al.AKUPM:Attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD InternationalConference on Knowledge Discovery & Data Mining.2019:1891-1899. [9]QU Y,BAI T,ZHANG W,et al.An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-dimensional Sparse Data.2019:1-9. [10]WANG Z,LIN G,TAN H,et al.CKAN:Collaborative know-ledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:219-228. [11]LYU Z,WU Y,LAI J,et al.Knowledge enhanced graph neural networks for explainable recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(5):4954-4968. [12]HOCHREITER S,SCHMIDHUBERJ.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [13]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [14]SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J].Advances in Artificial Intelligence,2009,2009(1):421425. [15]SUN Z,GUO Q,YANG J,et al.Research commentary on recommendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879. [16]GUO Z,WANG H.A deep graph neural network-based mechanism for social recommendations[J].IEEE Transactions on Industrial Informatics,2020,17(4):2776-2783. [17]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26. [18]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014. [19]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015. [20]JI G,HE S,XU L,et al.Knowledge graph embedding via dy-namic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(volume 1:Long papers).2015:687-696. [21]JI G,LIU K,HE S,et al.Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. [22]WANG H,ZHANG F,XIE X,et al.DKN:Deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference.2018:1835-1844. [23]KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:1746-1751. [24]HUANG J,ZHAO W X,DOU H,et al.Improving sequential recommendation with knowledge-enhanced memory networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:505-514. [25]SUN Y,HAN J,YAN X,et al.Pathsim:Meta path-based top-k similarity search in heterogeneous information networks[J].Proceedings of the VLDB Endowment,2011,4(11):992-1003. [26]YU X,REN X,GU Q,et al.Collaborative filtering with entity similarity regularization in heterogeneous information networks[J].IJCAI HINA,2013,27:1-6. [27]LUO C,PANG W,WANG Z,et al.Hete-cf:Social-based colla-borative filtering recommendation using heterogeneous relations[C]//2014 IEEE International Conference on Data Mining.IEEE,2014:917-922. [28]ZHAO H,YAO Q,LI J,et al.Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:635-644. [29]WANG H,ZHAO M,XIE X,et al.Knowledge graph convolu-tional networks for recommender systems[C]//The World Wide Web Conference.2019:3307-3313. [30]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [31]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].Stat,2017,1050(20):10-48550. [32]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362. [33]WANG H,ZHANG F,HOU M,et al.Shine:Signed heteroge-neous information network embedding for sentiment link prediction[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.2018:592-600. [34]YU X,REN X,SUN Y,et al.Personalized entity recommendation:A heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.2014:283-292. [35]RENDLE S.Factorization machines with libfm[J].ACM Transactions on Intelligent Systems and Technology(TIST),2012,3(3):1-22. [36]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10. [37]LI C,CAO Y,ZHU Y,et al.Ripple knowledge graph convolutional networks for recommendation systems[J].Machine Intelligence Research,2024,21(3):481-494. [38]WANTING L,YUQING Z.Recommendation Model Combining RippleNet and KGCN[C]//2024 9th International Conference on Signal and Image Processing(ICSIP).IEEE,2024:312-318. |
[1] | HU Xin, DUAN Jiangli, HUANG Denan. Concept Cognition for Knowledge Graphs by Mining Double Granularity Concept Characteristics [J]. Computer Science, 2025, 52(6A): 240800047-6. |
[2] | ZHENG Xinxin, CHEN Fan, SUN Baodan, GONG Jianguang, JIANG Junhui. Question Answering System for Soybean Planting Management Based on Knowledge Graph [J]. Computer Science, 2025, 52(6A): 240500025-8. |
[3] | HAN Daojun, LI Yunsong, ZHANG Juntao, WANG Zemin. Knowledge Graph Completion Method Fusing Entity Descriptions and Topological Structure [J]. Computer Science, 2025, 52(5): 260-269. |
[4] | LU Haiyang, LIU Xianhui, HOU Wenlong. Negative Sampling Method for Fusing Knowledge Graph [J]. Computer Science, 2025, 52(3): 161-168. |
[5] | SONG Baoyan, LIU Hangsheng, SHAN Xiaohuan, LI Su, CHEN Ze. Joint Relational Patterns and Analogy Transfer Knowledge Graph Completion Method [J]. Computer Science, 2025, 52(3): 287-294. |
[6] | WEI Qianqiang, ZHAO Shuliang, ZHANG Siman. Multi-hop Knowledge Base Question Answering Based on Differentiable Knowledge Graph [J]. Computer Science, 2025, 52(3): 295-305. |
[7] | CHENG Jinfeng, JIANG Zongli. Dialogue Generation Model Integrating Emotional and Commonsense Knowledge [J]. Computer Science, 2025, 52(1): 307-314. |
[8] | ZENG Zefan, HU Xingchen, CHENG Qing, SI Yuehang, LIU Zhong. Survey of Research on Knowledge Graph Based on Pre-trained Language Models [J]. Computer Science, 2025, 52(1): 1-33. |
[9] | CHENG Zhiyu, CHEN Xinglin, WANG Jing, ZHOU Zhongyuan, ZHANG Zhizheng. Retrieval-augmented Generative Intelligence Question Answering Technology Based on Knowledge Graph [J]. Computer Science, 2025, 52(1): 87-93. |
[10] | LIU Changcheng, SANG Lei, LI Wei, ZHANG Yiwen. Large Language Model Driven Multi-relational Knowledge Graph Completion Method [J]. Computer Science, 2025, 52(1): 94-101. |
[11] | NIU Guanglin, LIN Zhen. Survey of Knowledge Graph Representation Learning for Relation Feature Modeling [J]. Computer Science, 2024, 51(9): 182-195. |
[12] | CHEN Shanshan, YAO Subin. Study on Recommendation Algorithms Based on Knowledge Graph and Neighbor PerceptionAttention Mechanism [J]. Computer Science, 2024, 51(8): 313-323. |
[13] | ZHANG Hui, ZHANG Xiaoxiong, DING Kun, LIU Shanshan. Device Fault Inference and Prediction Method Based on Dynamic Graph Representation [J]. Computer Science, 2024, 51(7): 310-318. |
[14] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[15] | YANG Pengyue, WANG Feng, WEI Wei. ConvNeXt Feature Extraction Study for Image Data [J]. Computer Science, 2024, 51(6A): 230500196-7. |
|