Computer Science ›› 2020, Vol. 47 ›› Issue (7): 299-306.doi: 10.11896/jsjkx.190700199
• Information Security • Previous Articles Next Articles
YANG Wei-chao1,2, GUO Yuan-bo1, LI Tao1, ZHU Ben-quan2
CLC Number:
[1] | HOWELL J.Number of connected iot devices will surge to 125 billion by 2030.[EB/OL].(2018-11-07)[2019-07-15].https://technology.ihs.com/596542/. |
[2] | BORGIA E.The Internet of Things vision:Key features,applications and open issues[J].Computer Communications,2014,1(1):1-31. |
[3] | RESTUCCIA F,D’ORO S,MELODIA T.Securing the internet of things:New perspectives and research challenges[J].IEEE Internet of Things Journal,2018,1(1):1-14. |
[4] | STANKOVIC J A.Research directions for the internet of things[J].IEEE Internet of Things Journal,2014,1(1):3-9. |
[5] | PACHECO J,HARIRI S.IoT security framework for smart cyber infrastructures[C]//2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W).IEEE,2016:242-247. |
[6] | CALERO.3 Ways the Internet of Things will Impact Enterprise Security[EB/OL].(2018-06-17)[2019-7-15].https://www.calero.com/mobility-service-support/3-ways-the-internet-of-things-will-impact-enterprise-security/. |
[7] | BOZTAS A,RIETHOVEN A,ROELOFFS M.Smart TV forensics:Digital traces on televisions.[EB/OL].https://doi.org/10.1016/j.diin.2015.01.012. |
[8] | SAM B.WikiLeaks Dump Shows CIA Could Turn Smart TVs into Listening Devices[EB/OL].https://theintercept.com/2017/03/07/wikileaks-dump-shows-cia-could-turn-smart-tvs-into-listening-devices. |
[9] | CACHE J.Fingerprinting 802.11 implementations via statistical analysis of the duration field[J].Uninformed.org,2006,5. |
[10] | FRANKLIN J,MCCOY D,TABRIZ P,et al.Passive Data Link Layer 802.11 Wireless Device Driver Fingerprinting[C]//USENIX Security Symposium.2006:16-89. |
[11] | BOJINOV H,MICHALEVSKY Y,NAKIBLY G,et al.Mobile device identification via sensor fingerprinting[J].arXiv:1408.1416. |
[12] | VAN G T,SCHEEPERS W,PREUVENEERS D,et al.Accelerometer-based device fingerprinting for multi-factor mobile authentication[C]//International Symposium on Engineering Secure Software and Systems.Cham:Springer,2016:106-121. |
[13] | MEIDAN Y,BOHADANA M,SHABTAI A,et al.Detection of unauthorized iot devices using machine learning techniques[J].arXiv:1709.04647. |
[14] | NGUYEN T D,MARCHAL S,MIETTINEN M,et al.Diot:A crowdsourced self-learning approach for detecting compromised iot devices[J].arXiv:1804.07474. |
[15] | MEIDAN Y,BOHADANA M,SHABTAI A,et al.ProfilIoT:a machine learning approach for IoT device identification based on network traffic analysis[C]//Proceedings of the Symposium on Applied Computing.ACM,2017:506-509. |
[16] | SHAIKH F,BOU-HARB E,CRICHIGNO J,et al.A Machine Learning Model for Classifying Unsolicited IoT Devices by Observing Network Telescopes[C]//2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC).IEEE,2018:938-943. |
[17] | SALMAN O,CHADDAD L,ELHAJJ I H,et al.Pushing intelligence to the network edge[C]//2018 Fifth International Conference on Software Defined Systems (SDS).IEEE,2018:87-92. |
[18] | THANGAVELU V,DIVAKARAN D M,SAIRAM R,et al.Deft:A distributed iot fingerprinting technique[J].IEEE Internet of Things Journal,2018,6(1):940-952. |
[19] | MIETTINEN M,MARCHAL S,HAFEEZ I,et al.IoT Senti-nel:Automated device-type identification for security enforcement in IoT[C]//2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).IEEE,2017:2177-2184. |
[20] | DIRO A A,CHILAMKURTI N.Distributed attack detectionscheme using deep learning approach for Internet of Things[J].Future Generation Computer Systems,2018,82(1):761-768. |
[21] | FAURI D,KAPSALAKIS M,DOSSANTOS D R,et al.Role In-ference+ Anomaly Detection= Situational Awareness in BAC-net Networks[C]//International Conference on Detection of Intrusions and Malware,and Vulnerability Assessment.Cham:Springer,2019:461-481. |
[22] | MILOSLAVSKAYA N,TOLSTOY A.Internet of Things:information security challenges and solutions[J].Cluster Computing,2019,1(1):1-17. |
[23] | NAWIR M,AMIR A,YAAKOB N,et al.Internet of Things(IoT):Taxonomy of security attacks[C]//2016 3rd International Conference on Electronic Design (ICED).IEEE,2016:321-326. |
[24] | PACHECO J,ZHU X,BADR Y,et al.Enabling risk management for smart infrastructures with an anomaly behavior analysis intrusion detection system[C]//2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W).IEEE,2017:324-328. |
[25] | MOZZAQUATRO B,AGOSTINHO C,GONCALVES D,et al.An Ontology-Based Cybersecurity Framework for the Internet of Things[J].Sensors,2018,18(9):3053-3061. |
[26] | MOZZAQUATRO B A,JARDIM-GONCALVES R,Agostinho C.Towards a Reference Ontology for Security in the Internet of Things[C]//IEEE International Workshop on Measurement & Networking 2015.IEEE,2015:289-296. |
[27] | HERZOG A,SHAHMEHRI N,DUMA C.An ontology of information security[J].International Journal of Information Security and Privacy (IJISP),2007,1(4):1-23. |
[28] | FENZ S,EKELHART A.Formalizing information securityknowledge[C]//Proceedings of the 4th International Symposiumon Information,Computer,and Communications Security.ACM,2009:183-194. |
[29] | UNDERCOFFER J,JOSHI A,PINKSTON J.Modeling com-puter attacks:An ontology for intrusion detection[C]//International Workshop on Recent Advances in Intrusion Detection.Berlin:Springer,2003:113-135. |
[30] | ACRIS.IoT devices setup captures (IoT Sentinel experiments) [EB/OL].https:// research.Aalto.fi/files/1150458/captures IoT Sentinel.zip. |
[1] | LIU Zhen-peng, SU Nan, QIN Yi-wen, LU Jia-huan, LI Xiao-fei. FS-CRF:Outlier Detection Model Based on Feature Segmentation and Cascaded Random Forest [J]. Computer Science, 2020, 47(8): 185-188. |
[2] | ZHAO Rui-jie, SHI Yong, ZHANG Han, LONG Jun, XUE Zhi. Webshell File Detection Method Based on TF-IDF [J]. Computer Science, 2020, 47(11A): 363-367. |
[3] | WANG Xiao-hui, ZHANG Liang, LI Jun-qing, SUN Yu-cui, TIAN Jie, HAN Rui-yi. Study on XGBoost Improved Method Based on Genetic Algorithm and Random Forest [J]. Computer Science, 2020, 47(11A): 454-458. |
[4] | ZHANG Bin-bin, WANG Juan, YUE Kun, WU Hao, HAO Jia. Performance Prediction and Configuration Optimization of Virtual Machines Based on Random Forest [J]. Computer Science, 2019, 46(9): 85-92. |
[5] | PANG Yu, LIU Ping, LEI Yin-jie. Realization of “Uncontrolled” Object Recognition Algorithm Based on Mobile Terminal [J]. Computer Science, 2019, 46(6A): 153-157. |
[6] | SHI Yu-xin, DENG Hong-min, GUO Wei-lin. Static Gesture Recognition Based on Hybrid Convolution Neural Network [J]. Computer Science, 2019, 46(6A): 165-168. |
[7] | CHEN Xi, LI Lei-da, LI Qiao-yue, HAN Xi-xi, ZHU Han-cheng. No-reference Quality Assessment of Depth Images Based on Natural Scenes Statistics [J]. Computer Science, 2019, 46(6): 256-262. |
[8] | CUI Jing-chun, WANG Jing. Face Expression Recognition Model Based on Enhanced Head Pose Estimation [J]. Computer Science, 2019, 46(6): 322-327. |
[9] | ZHOU Ming,JIA Yan-ming,ZHOU Cai-lan,XU Ning. English Automated Essay Scoring Methods Based on Discourse Structure [J]. Computer Science, 2019, 46(3): 234-241. |
[10] | GUAN Xiao-qiang, PANG Ji-fang, LIANG Ji-ye. Randomization of Classes Based Random Forest Algorithm [J]. Computer Science, 2019, 46(2): 196-201. |
[11] | LI Guang-hua, LI Jun-qing, ZHANG Liang, XIN Yan-sen, DENG Hua-wei. Feature Selection Method Based on Ant Colony Optimization and Random Forest [J]. Computer Science, 2019, 46(11A): 212-215. |
[12] | ZENG Xing, SUN Bei ,LUO Wu-sheng, LIU Tao-cheng ,LU Qin. Sitting Posture Detection System Based on Depth Sensor [J]. Computer Science, 2018, 45(7): 237-242. |
[13] | PENG Zheng, WANG Ling-jiao, GUO Hua. Parallel Text Categorization of Random Forest [J]. Computer Science, 2018, 45(12): 148-152. |
[14] | SHI Yan-wen and WANG Hong-jie. Cost-sensitive Random Forest Classifier with New Impurity Measurement [J]. Computer Science, 2017, 44(Z11): 98-101. |
[15] | ZHOU Xian-ting, HUANG Wen-ming and DENG Zhen-rong. Micro-blog Retweet Behavior Prediction Algorithm Based on Anomaly Detection and Random Forest [J]. Computer Science, 2017, 44(7): 191-196. |
|