Computer Science ›› 2022, Vol. 49 ›› Issue (7): 40-49.doi: 10.11896/jsjkx.210700226
Special Issue: Big Data & Data Scinece
• Database & Big Data & Data Science • Previous Articles Next Articles
GAO Zhen-zhuo, WANG Zhi-hai, LIU Hai-yang
CLC Number:
[1]GRABOCKA J,SCHILLING N,WISTUBA M,et al.Learningtime-series shapelets[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2014:392-401. [2]YAN W H,LI G L.Research on time series classification based on shapelet[J].Computer Science,2019,46(1):29-35. [3]MIDDLEHURST M,LARGE J,BAGNALL A.The canonical interval forest(CIF) classifier for time series classification[J].arXiv:2008.09172,2020. [4]LEE W,PARK S,JOO W,et al.Diagnosis prediction via medical context attention networks using deep generative modeling[C]//2018 IEEE International Conference on Data Mining.IEEE,2018:1104-1109. [5]LUCAS B,SHIFAZ A,PELLETIER C,et al.Proximity forest:an effective and scalable distance-based classifier for time series[J].Data Mining and Knowledge Discovery,2019,33(3):607-635. [6]FAWAZ H I,FORESTIER G,WEBER J,et al.Deep learningfor time series classification:a review[J].Data Mining and Knowledge Discovery,2019,33(4):917-963. [7]DAU H A,KEOGH E,KAMGAR K,et al.The UCR Time Series Classification Archive[EB/OL].https://www.cs.ucr.edu/~eamonn/time_series_data_2018. [8]YE L,KEOGH E.Time series shapelets:a novel technique that allows accurate,interpretable and fast classification[J].Data Mining and Knowledge Discovery,2011,22(1):149-182. [9]RAKTHANMANON T,KEOGH E.Fast shapelets:a scalablealgorithm for discovering time series shapelets[C]//Proceedings of the 13th SIAM International Conference on Data Mining.SIAM,2013:668-676. [10]KARLSSON I,PAPAPETROU P,BOSTRÖM H.Generalizedrandom shapelet forests[J].Data Mining and Knowledge Discovery,2016,30(5):1053-1085. [11]LI G L,YAN W H,WU Z D.Discovering shapelets with key points in time series classification[J].Expert Systems with Applications,2019,132:76-86. [12]ZHANG Z G,ZHANG H W,WEN Y L,et al.Discriminative extraction of features from time series[J].Neurocomputing,2018,275:2317-2328. [13]MUEEN A,KEOGH E,YOUNG N.Logical-shapelets:an expressive primitive for time series classification[C]//Proceedings of the 17th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.ACM,2011:1154-1162. [14]DENG H,RUNGER G,TUV E,et al.A time series forest for classification and feature extraction[J].Information Sciences,2013,239:142-153. [15]LUBBA C H,SETHI S S,KNAUTE P,et al.Catch22:canonical time-series characteristics[J].Data Mining and Knowledge Discovery,2019,33(6):1821-1852. [16]HILLS J,LINES J,BARANAUSKAS E,et al.Classification of time series by shapelet transformation[J].Data Mining and Knowledge Discovery,2014,28(4):851-881. [17]BOSTROM A,BAGNALL A.Binary shapelet transform formulticlass time series classification[J/OL].Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXII.Springer,2017:24-46.https://doi.org/10.1007/978-662-55608-5_2. [18]BAGNALL A,LINES J,VICKERS W,et al.The UEA & UCR Time Series Classification Repository [EB/OL].http://www.timeseriesclassification.com. [19]WANG Z,YAN W,OATES T.Time series classification from scratch with deep neural networks:a strong baseline[C]//2017 International Joint Conference on Neural Networks.IEEE,2017:1578-1585. [20]LIN J,KEOGH E,WEI L,et al.Experiencing SAX:a novelsymbolic representation of time series[J].Data Mining and Knowledge Discovery,2007,15(2):107-144. [21]LINES J,TAYLOR S,BAGNALL A.Time series classification with HIVE-COTE:the hierarchical vote collective of transformation-based ensembles[J].ACM Transactions on Knowledge Discovery from Data,2018,12(5):1-35. [22]LIN J,KHADE R,LI Y.Rotation-invariant similarity in time series using bag-of-patterns representation[J].Journal of Intelligent Information Systems,2012,39(2):287-315. [23]SENIN P,MALINCHIK S.SAX-VSM:interpretable time series classification using SAX and vector space model[C]//2013 IEEE 13rd International Conference on Data Mining.IEEE,2013:1175-1180. [24]SCHÄFER P.The BOSS is concerned with time series classification in the presence of noise[J].Data Mining and Knowledge Discovery,2015,29(6):1505-1530. [25]SCHÄFER P,LESER U.Fast and accurate time series classification with WEASEL[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management.ACM,2017:637-646. [26]SCHÄFER P,HÖGQVIST M.SFA:a symbolic fourier approximation and index for similarity search in high dimensional datasets[C]//Proceedings of the 15th International Conference on Extending Database Technology.Springer,2012:516-527. [27]MIDDLEHURST M,VICKERS W,BAGNALL A.Scalable dictionary classifiers for time series classification[C]//Internatio-nal Conference on Intelligent Data Engineering and Automated Learning.Springer,2019:11-19. [28]ZHANG W,WANG Z H,YUAN J D,et al.Time series discri-minative feature dictionary construction algorithm[J].Ruan Jian Xue Bao:Journal of Software,2020,31(10):3216-3237. [29]YUAN J D,LIN Q H,ZHANG W,et al.Locally slope-based dynamic time warping for time series classification[C]//Procee-dings of the 28th ACM International Conference on Information and Knowledge Management.ACM,2019:1713-1722. [30]BAGNALL A,LINES J,BOSTROM A,et al.The great time series classification bake off:A review and experimental evaluation of recent algorithmic advances[J].Data Mining and Knowledge Discovery,2017,31(3):606-660. [31]LINES J,BAGNALL A.Time series classification with ensembles of elastic distance measures[J].Data Mining and Know-ledge Discovery,2015,29(3):565-592. [32]BAGNALL A,LINES J,HILLS J,et al.Time-series classification with COTE:the collective of transformation-based ensembles[J].IEEE Transactions on Knowledge and Data Enginee-ring,2015,27(9):2522-2535. [33]FULCHER B D,JONES N S.Hctsa:a computational framework for automated time-series phenotyping using massive feature extraction[J].Cell Systems,2017,5(5):527-531. [34]DEMAR J.Statistical comparisons of classifiers over multiple datasets[J].Journal of Machine Learning Research,2006,7(1):1-30. |
[1] | CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32. |
[2] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[3] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[4] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[5] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[6] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[7] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[8] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[9] | ZHANG Hong-bo, DONG Li-jia, PAN Yu-biao, HSIAO Tsung-chih, ZHANG Hui-zhen, DU Ji-xiang. Survey on Action Quality Assessment Methods in Video Understanding [J]. Computer Science, 2022, 49(7): 79-88. |
[10] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[11] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
[12] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[13] | HUANG Shao-bin, SUN Xue-wei, LI Rong-sheng. Relation Classification Method Based on Cross-sentence Contextual Information for Neural Network [J]. Computer Science, 2022, 49(6A): 119-124. |
[14] | LIN Xi, CHEN Zi-zhuo, WANG Zhong-qing. Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning [J]. Computer Science, 2022, 49(6A): 144-149. |
[15] | KANG Yan, WU Zhi-wei, KOU Yong-qi, ZHANG Lan, XIE Si-yu, LI Hao. Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution [J]. Computer Science, 2022, 49(6A): 150-158. |
|