Computer Science ›› 2020, Vol. 47 ›› Issue (6): 184-193.doi: 10.11896/jsjkx.191200151
• Artificial Intelligence • Previous Articles Next Articles
WU Xiao-kun1,2,3,4, ZHAO Tian-fang1,2
CLC Number:
[1]CHOMSKY N.Syntactic structures [M].The Hague:Mouton,1957. [2]TURING A M.Computing Machinery and Intelligence [J]. Mind,1950,59(236):433-460. [3]HODGKIN A L,HUXLEY A F.A quantitative description of membrane current and its application to conduction and excitation in nerve [J].Physiology,1952,117(4):500-544. [4]LECUN Y,BENGIO Y,HINTON G.Deep learning [J].Nature,2015,521(7553):436. [5]GOLDBERG Y.A primer on neural network models for natural language processing [J].Journal of Artificial Intelligence Research,2016,57:345-420. [6]ELMAN J L.Learning and development in neural networks:the importance of starting small [J].Cognition,1993,48(1):71-99. [7]HOCHREITER S,SCHMIDHUBER J.Long short-term memory [J].Neural computation,1997,9(8):1735-1780. [8]SUTSKEVER I,VINYALS O,LE Q V,et al.Sequence to Sequence Learning with Neural Networks[C]//Neural Information Processing Systems.2014:3104-3112. [9]KARIMI H,ROY P,SABA-SADIYA S,et al.Multi-source multi-class fake news detection[C]//COLING.2018:1546-1557. [10]FAN W T,HOU H X,WANG H B.Mongolian-Chinese neural machine translation with priori information [J].Journal of Chinese Information Processing,2018,32(6):36-43. [11]XING C,WU W,WU Y,et al.Topic aware neural response ge-neration[C]//AAAI.2016:3351-3357. [12]ZHANG X,LAPATA M.Chinese poetry generation with recurrent neural networks[C]//EMNLP.2014:670-680. [13]WANG J H.Research on some key technologies in Chinese information processing [D].Shanghai:Fudan University,2004. [14]Chinese information processing society of China.Developmentreport of Chinese information processing [R].2016. [15]JUNYI S.jieba [EB/OL].https://github.com/fxsjy/jieba. [16]WANG S N,ZONG C Q.A Double-channel LDA model for Chinesesemetics [J].Chinese Journal of Computers,2016,39(8):1652-1666. [17]WEN B,HE T T,LUO L.Research on text sentiment classification based on semantic understanding [J].Computer Science,2010,37(6):261-264. [18]WU Y F,LI S J,QIN M K,et al.Construction and analysis of text-dependenttreebank in Chinese and English [J].Journal of Chinese Information Processing,2018,32(1):75-82. [19]LIU K,WANG H L.A study on the coherence of automatic abstracting based on textual rhetorical structure [J].Journal of Chinese Information Processing,2019,33(1):82-89. [20]DING G D,BAI S,WANG B.A survey of statistical language modeling methods for text retrieval [J].Journal of Computer Research and Development,2006,43(5):769-776. [21]TAO J H,HUA Y M.Chinese Colloquial rule synthesis system based on PSOLA technology [J].Journal of Nanjing University (Natural Science),1998(1):85-92. [22]WANG K L.Research on Uyghur syllable speech recognition and recognition primitives [J].Computer Science,2003,30(7):182-184. [23]LIU Y Q,ZHANG M,MA S P.Research on network data cleaning for information retrieval [J].Journal of Chinese Information Processing,2006,20(3):70-77. [24]CAO Z J,LI Z S,LIU C T.Research on question understanding in automatic Q&A system [J].Computer Science,2005(11):160-162,232. [25]HAN X P,QI Z Y,TIAN Y,et al.An encyclopedia Q&A system based on domain semantics information[C]//Advances of Computational Linguistics in China.2009. [26]LIU K,ZHANG Y Z,JI G L.Research progress and prospect of knowledge Q&A system based on representation learning [J].ACTA AutomaticSinica,2016,42(6):807-818. [27]LI M X,ZONG C Q.Summarization on machine translation technology convergence [J].Journal of Chinese Information Processing.2010,24(4):74-85. [28]SUN C K,ZHONG Y X.Summarization generation and related techniques in natural language processing [J].Computer Science,1999,26(10):16-19. [29]LIU L Q,ZHENG F,WU W H.Acoustic modeling of Mandarin sound recognition based on small data [J].Journal ofTsing Hua University (Science and Technology),2008,48(4):604-607. [30]CUNHA E,MAGNO G,CAETANO J.Fake news as we feel it:perception and conceptualization of the term “fake news” in the media[C]//International Conference on Social Informatics.2018:151-166. [31]LI Q,HU Q,LU Y,et al.Personal and Ubiquitous Computing,2019.Multi-level word features based on CNN for fake news detection in cultural communication [J].Personal and Ubiquitous Computing,2020(24):259-272. [32]VOLKOVA S,SHAFFER K,JANG J Y,et al.Separating facts from fiction:Linguistic models to classify suspicious and trusted news posts on twitter[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2018:647-653. [33]RASHKIN H,CHOI E,JANG J Y,et al.Truth of varying shades:Analyzing language in fake news and political fact-checking[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:2931-2937. [34]MA J,GAO W,MITRA P,et al.Detecting Rumors from Microblogs with Recurrent Neural Networks[C]//IJCAI.2016:3818-3824. [35]PISAREVSKAYA D.Deception Detection in News Reports in the Russian Language:Lexics and Discourse[C]//EMNLP.2017:74-79. [36]QIAN F,GONG C,SHARMA K,et al.Neural User Response Generator:Fake News Detection with Collective User Intelligence[C]//IJCAI.2018:3834-3840. [37]WANG W Y.“Liar,Liar Pants on Fire”:A New Benchmark Dataset for Fake News Detection[R].2017. [38]ZUBIAGA A,LIAKATA M,PROCTER R N.Exploiting Context forRumour Detection in Social Media[C]//International Conference on Social Informatics.2017:109-123. [39]CAZALENS S,LEBLAY J,LAMARRE P,et al.Computational Fact Checking:A Content Management Perspective [J].Proceedings of the VLDB Endowment,2018,11(12):2110-2113. [40]BONDIELLI A,MARCELLONI F.A survey on fake news andrumour detection techniques [J].Information Sciences,2019,497:38-55. [41]NGUYEN D M,DO T H,CALDERBANK R,et al.Fake News Detection using Deep Markov Random Fields[C]//HLT-NAACL.2019:1391-1400. [42]RUBIN V L,CHEN Y,CONROY N J.Deception detection for news:three types of fakes[C]//Proceedings of the 78th ASIS&T Annual Meeting:Information Science with Impact:Research in and for the Community.2015:83. [43]DE SARKAR S,YANG F,MUKHERJEE A.Attending Sentences to detect Satirical Fake News[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:3371-3380. [44]CONFORTI C,COLLIER N.Towards Automatic Fake News Detection:Cross-Level Stance Detection in News Articles[C]//FEVER.2018:40-49. [45]LIU Z Y,ZHANG L,CUNCHAO T U, et al.Statistical Semantic analysis of Chinese social media rumors [J].Science China:Information Science,2015,45(12):1536-1546. [46]ZU K L,ZHAO M L,GUO K,et al.Research on Sina Weibo rumor detection [J].Journal of Chinese Information Processing,2017,31(3):198-204. [47]DAGAN I,GLICKMAN O,MAGNINI B.The PASCALRecognising Textual Entailment Challenge [C]//MLCW 2005.2006:177-190. [48]ZELLERS R,BISK Y,SCHWARTZ R,et al.SWAG:A Large-Scale Adversarial Dataset for Grounded Commonsense Inference[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018. [49]SMIRNOV D.Neural Network-Based Models with Commonsense Knowledge for Machine Reading Comprehension[C]//Student Research Workshop.2019:90-94. [50]CHEN S Y,LIN X,XIAO Y H,et al.Sentiment Commonsense Induced Sequential Neural Networks for Sentiment Classification[C]//Proceedings of the 28th ACM International Confe-rence on Information and Knowledge Management.2019:1021-1030. [51]VILARES D,PENG H,SATAPATHY R,et al.BabelSenticNet:A Commonsense Reasoning Framework for Multilingual Sentiment Analysis[C]//2018 IEEE Symposium Series on Computational Intelligence (SSCI).2018:1292-1298. [52]MULLENBACH J,GORDON J,PENG N,et al.Do Nuclear Submarines Have Nuclear Captains? A Challenge Dataset for Commonsense Reasoning over Adjectives and Objects[C]//EMNLP-IJCNLP.2019:6054-6060. [53]BIN N Y,AI A S,KWOK K,et al.Commonsense inference in human-robot communication[C]//Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing.2019:104-112. [54]RUDINGER R,VAN DURME B.Ordinal Common-sense Inference [J].MIT Press Journals,2017(5):379-395. [55]CARLSON M.The robotic reporter:Automated journalism and the redefinition of labor,compositional forms,and journalistic authority [J].Digital journalism,2015,3(3):416-431. [56]LINDEN C G.Decades of Automation in the Newsroom:Why are there still so many jobs in journalism? [J].Digital Journa-lism,2017,5(2):123-140. [57]BLEI D M,NG A Y,JORDAN M I.Latentdirichlet allocation [J].Journal of Machine Learning Research,2003,3(Jan):993-1022. [58]TEH Y W,JORDAN M I, BEAL M J,et al.Sharing clusters among related groups:Hierarchical Dirichlet processes[C]//Advances in Neural Information Processing Systems.2005:1385-1392. [59]ZHANG H,BOONS F,BATISTA-NAVARRO R.Whose story is it anyway? Automatic extraction of accounts from news articles [J].Information Processing and Management,2019,56(5):1837-1848. [60]GONG J,WEN R,ZHANG P.An Automatic Generation Method of Sports News Based on Knowledge Rules[C]//2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS).2017:499-502. [61]CHEN X M,GAO C,GUAN X H.A method of LDA subject model for opinion extraction in Internet [J].Library and Information Service,2015,59(21):21-26. [62]YAN Y Y,TAO Y B,LIN H.Interactive theme modeling based on Hierarchical Johann Peter Gustav Lejeune Dirichlet process [J].Journal of Software,2016(5):1114-1126. [63]BAI J F.Online news aggregation based on hierarchical topic model [D].Hangzhou:Zhengjiang University,2015. [64]ZHENG Y X.Research on personalized recommendation of micro-blog news based on probabilistic topic model [D].Chongqing:Chongqing University,2015. [65]KRIEKEN K VAN,HOEKEN H.Blended viewpoints,mediated witnesses:A cognitive linguistic approach to news narratives [J].Viewpoint and the fabric of meaning:Form and use of viewpoint tools across languages and modalities,2016(1):145-168. [66]SANDERS J,VAN KRIEKEN K.Traveling through narrative time:How tense and temporaldeixis guide the representation of time and viewpoint in news narratives 1 Introduction [J].Cognitive Linguistics,2019,30(2):281-304. [67]KRIEKEN K V,SANDERS J.Smoothly moving through Mental Spaces:Linguistic patterns of viewpoint transfer in news narratives [J].Cognitive Linguistics,2019,30(3):499-529. [68]CASWELL D,DÖRR K.Automated Journalism 2.0:EventDriven Narratives From simple descriptions to real stories [J].Journalism practice,2018,12(4):477-496. [69]DAI Z,TANEJA H,HUANG R.Fine-grained Structure-based News Genre Categorization[C]//Proceedings of the Workshop Events and Stories in the News.2018:61-67. [70]CHANDRASEKHARAN E,SAMORY M,JHAVER S,et al. The Internet’s Hidden Rules:An Empirical Study ofReddit Norm Violations at Micro,Meso,and Macro Scales [C]//ACM-HCI.2018:32. [71]WASEEM Z,HOVY D.Hateful symbols or hateful people? predictive features for hate speech detection on twitter[C]//Proceedings of the NAACL Student Research Workshop.2016:88-93. [72]AKEN B V,RISCH J,KRESTEL R,et al.Challenges for toxic comment classification:An in-depth error analysis[C]//Proceedings of the 2nd Workshop on Abusive Language Online (co-located with EMNLP).2018:33-42. [73]MISHRA P,DEL TREDICI M,YANNAKOUDAKIS H,et al.Author profiling for abuse detection[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:1088-1098. [74]WU F,HUANG Y.Collaborative multi-domain sentiment classification[C]//IEEE International Conference on Data Mining.2015:459-468. [75]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks [J].The Journal of Machine Learning Research,2016,17(1):2030-2096. [76]CHEN J,CHEN J,YU Z.Incorporating Structured Commonsense Knowledge in Story Completion[C]//Proceedings of the 2nd Workshop on NLP for Internet Freedom:Censorship,Disinformation,and Propaganda.2019:76-82. [77]PITSILIS G K,RAMAMPIARO H,LANGSETH H.Detecting Offensive Language in Tweets Using Deep Learning [R].2018. [78]KARAN M,SNAJDER J.Cross-Domain Detection of Abusive Language Online[C]//Proceedings of the 2nd Workshop on Abusive Language Online (ALW2).2018:132-137. [79]ZAMPIERI M,MALMASI S,NAKOV P,et al.SemEval-2019 Task 6:Identifying and Categorizing Offensive Language in Social Media (OffensEval)[C]//SemEval-2019.2019:75-86. [80]LIU P,LI W,ZOU L.NULI at SemEval-2019 Task 6:Transfer Learning for Offensive Language Detection using Bidirectional Transformers[C]//SemEval-2019.2019:87-91. [81]WIEDEMANN G,RUPPERT E,TECHNOLOGY L,et al. UHH-LT at SemEval-2019 Task 6:Supervisedvs .Unsupervised Transfer Learning for Offensive Language Detection Dense Dense (n units)[C]//SemEval-2019.2019:782-787. [82]KUMAR R.Bhanodaig at SemEval-2019 Task 6:Categorizing Offensive Language in social media[C]//SemEval-2019.2019:547-550. [83]BANSAL H.HAD-Tubingen at SemEval-2019 Task 6:Deep Learning Analysis of Offensive Language on Twitter:Identification and Categorization[C]//SemEval-2019.2019:622-627. [84]SWAMY S D,JAMATIA A.NITAgartala NLP Team at SemEval-2019 Task 6:An Ensemble Approach to Identifying and Categorizing Offensive Language in Twitter Social Media Corpora[C]//SemEval-2019.2019:696-703. [85]INDURTHI V,SYED B,SHRIVASTAVA M.Fermi at SemEval-2019 Task 6:Identifying and Categorizing Offensive Language in Social Media using Sentence Embeddings[C]//SemEval-2019.2019:611-616. [86]ZHANG Y H,LIN X W.A review of affective computing [J].Computer Science,2008(5):9-12. [87]WANG Y N,ZHOU L M,LUO Y J.The establishment and evaluation of Chinese affective word system [J].Chinese Mental Health Journal,2008,22(8):608-612. [88]ZHANG C G,LIU P Y,et al.A method of emotion analysis based on polar dictionary [J].Journal of Shandong University:Science Edition,2012(3):50-53. [89]XU L H,LIN H F,PAN Y,et al.The construction of emotional vocabulary noumenon [J].Journal of the China Society for Scientific and Technical Information,2008,27(2):180-185. [90]HUANG F L,YU G,ZHANG J L,et al.Emotion mining of microblog theme based on social relationship [J].Journal of Software.2017,28(3):694-707. [91]JIANG T J,WAN C X,LIU D X,et al.Semantic analysis-based evaluation object-affective word pair extraction [J].Chinese Journal of Computers,2017,40(3):617-633. [92]LIU D X,NIE J Y,ZHANG J,et al.Chinese micro-blog sentiment word extraction:N-GRAM feature classification method [J].Journal of Chinese Information Processing,2016,30(4):193-205. [93]JIANG L,YU M,ZHOU M,et al.Target-dependent Twitter Sentiment Classification[C]//Meeting of the Association for Computational Linguistics:Human Language Technologies.2011:151-160. [94]XUE Y X,LI S S,WANG Z Q.Semi-supervised emotion classification based on social relation networks [J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(1):61-66. [95]PANG B,LEE L,VAITHYANATHAN S.Thumbs up?:sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing.2002:79-86. [96]TURNEY,PETER D,LITTMAN,et al.Measuring Praise and Criticism:Inference of Semantic Orientation from Association[J].ACM Transactions on Information Systems,2003,21(4):315-346. [97]LI S,WANG Z,LEE S Y M,et al.Sentiment Classification with Polarity Shifting Detection[C]//2013 International Conference on Asian Language Processing (IALP).IEEE Computer Society,2013:129-132. [98]WU X K.Reconstruction and direction of journalism and communication research in the era of big data [J].Social Sciences in Nanjing,2016(11):94-102. [99]GRIFFIN E A.2012.A first look at communication theory [M].New York:McGraw-Hill,2012. [100]NARACAPILIDIS N,PAPADIAS D,PAPPIS C,et al.Compu-ter-mediated collaborative decision making:theoretical and implementation issues[C]//Hawaii International Conference on System Sciences.1999. [101]CAMBRIA E,PORIA S,GELBUKH A,et al.Sentiment Analysis Is a Big Suitcase [J].Intelligent Systems IEEE,2017,32(6):74-80. |
[1] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[2] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[3] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
[4] | ZHANG Hu, BAI Ping. Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification [J]. Computer Science, 2022, 49(2): 279-284. |
[5] | CHEN Zhi-yi, SUI Jie. DeepFM and Convolutional Neural Networks Ensembles for Multimodal Rumor Detection [J]. Computer Science, 2022, 49(1): 101-107. |
[6] | WANG Li-mei, ZHU Xu-guang, WANG De-jia, ZHANG Yong, XING Chun-xiao. Study on Judicial Data Classification Method Based on Natural Language Processing Technologies [J]. Computer Science, 2021, 48(8): 80-85. |
[7] | WU Yu, LI Zhou-jun. Survey on Retrieval-based Chatbots [J]. Computer Science, 2021, 48(12): 278-285. |
[8] | TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267. |
[9] | LU Long-long, CHEN Tong, PAN Min-xue, ZHANG Tian. CodeSearcher:Code Query Using Functional Descriptions in Natural Languages [J]. Computer Science, 2020, 47(9): 1-9. |
[10] | TIAN Ye, SHOU Li-dan, CHEN Ke, LUO Xin-yuan, CHEN Gang. Natural Language Interface for Databases with Content-based Table Column Embeddings [J]. Computer Science, 2020, 47(9): 60-66. |
[11] | SHU Yun-feng and WANG Zhong-qing. Research on Chinese Patent Summarization Based on Patented Structure [J]. Computer Science, 2020, 47(6A): 45-48. |
[12] | ZHANG Hao-yang and ZHOU Liang. Application of Improved GHSOM Algorithm in Civil Aviation Regulation Knowledge Map Construction [J]. Computer Science, 2020, 47(6A): 429-435. |
[13] | ZHANG Ying, ZHANG Yi-fei, WANG Zhong-qing and WANG Hong-ling. Automatic Summarization Method Based on Primary and Secondary Relation Feature [J]. Computer Science, 2020, 47(6A): 6-11. |
[14] | HU Chao-wen, YANG Ya-lian, WU Chang-xing. Survey of Implicit Discourse Relation Recognition Based on Deep Learning [J]. Computer Science, 2020, 47(4): 157-163. |
[15] | YU Shan-shan, SU Jin-dian, LI Peng-fei. Sentiment Classification Method for Sentences via Self-attention [J]. Computer Science, 2020, 47(4): 204-210. |
|