Computer Science ›› 2020, Vol. 47 ›› Issue (6): 184-193.doi: 10.11896/jsjkx.191200151

• Artificial Intelligence • Previous Articles     Next Articles

Application of Natural Language Processing in Social Communication:A Review and Future Perspectives

WU Xiao-kun1,2,3,4, ZHAO Tian-fang1,2   

  1. 1 School of Computer Science and Engineering,South China University of Technology,Guangzhou 510000,China
    2 Guangdong-Hong Kong Joint Innovation Platform of Big Data & Computational Intelligence,Guangzhou 510000,China
    3 School of Journalism and Communication,South China University of Technology,Guangzhou 510000,China
    4 Center of Data Analysis and Information Visualization,Guangzhou 510000,China
  • Received:2019-12-24 Online:2020-06-15 Published:2020-06-10
  • About author:WU Xiao-kun,born in 1980,Ph.D,professor.Her main research interests include online collective actions and communication models,and mass communications.
    ZHAO Tian-fang,born in 1991,Ph.D .Her main research interests include social network data analytics,network propagation dynamics,complex network and system,and evolutionary computation.
  • Supported by:
    This work was supported by the National Key R&D Program of China(2017YFC0820106),National Social Science Fund of China (18AXW007) and National Natural Science Foundation of China (61873097,61972442)

Abstract: Natural language processing (NLP),as a branch of artificial intelligence,has accelerated the development of social communication studies in both theory and application.This paper introduces the historical development of NLP,and then reviews the application of NLP in social communication studies,including five aspects:fake news detection,commonsense reasoning,automated journalism,offensive language identification,and affective computing.Some commonly used datasets have been provided,and the advantages and deficiencies of existing researches are discussed.Furthermore,to promote the deep integration of NLP techniques and social communication,this paper proposes four promising application fields after investigating communication theories:building group decision support system,computer-mediated intimate relationship judgment,attribute analysis based on social judgment theory,the generating of public agenda.Overall,this paper paves the way for intelligent social communication analysis.

Key words: Chinese information processing, Natural language processing, News communication, Propagation analysis, Social communication

CLC Number: 

  • TP391
[1]CHOMSKY N.Syntactic structures [M].The Hague:Mouton,1957.
[2]TURING A M.Computing Machinery and Intelligence [J]. Mind,1950,59(236):433-460.
[3]HODGKIN A L,HUXLEY A F.A quantitative description of membrane current and its application to conduction and excitation in nerve [J].Physiology,1952,117(4):500-544.
[4]LECUN Y,BENGIO Y,HINTON G.Deep learning [J].Nature,2015,521(7553):436.
[5]GOLDBERG Y.A primer on neural network models for natural language processing [J].Journal of Artificial Intelligence Research,2016,57:345-420.
[6]ELMAN J L.Learning and development in neural networks:the importance of starting small [J].Cognition,1993,48(1):71-99.
[7]HOCHREITER S,SCHMIDHUBER J.Long short-term memory [J].Neural computation,1997,9(8):1735-1780.
[8]SUTSKEVER I,VINYALS O,LE Q V,et al.Sequence to Sequence Learning with Neural Networks[C]//Neural Information Processing Systems.2014:3104-3112.
[9]KARIMI H,ROY P,SABA-SADIYA S,et al.Multi-source multi-class fake news detection[C]//COLING.2018:1546-1557.
[10]FAN W T,HOU H X,WANG H B.Mongolian-Chinese neural machine translation with priori information [J].Journal of Chinese Information Processing,2018,32(6):36-43.
[11]XING C,WU W,WU Y,et al.Topic aware neural response ge-neration[C]//AAAI.2016:3351-3357.
[12]ZHANG X,LAPATA M.Chinese poetry generation with recurrent neural networks[C]//EMNLP.2014:670-680.
[13]WANG J H.Research on some key technologies in Chinese information processing [D].Shanghai:Fudan University,2004.
[14]Chinese information processing society of China.Developmentreport of Chinese information processing [R].2016.
[15]JUNYI S.jieba [EB/OL].https://github.com/fxsjy/jieba.
[16]WANG S N,ZONG C Q.A Double-channel LDA model for Chinesesemetics [J].Chinese Journal of Computers,2016,39(8):1652-1666.
[17]WEN B,HE T T,LUO L.Research on text sentiment classification based on semantic understanding [J].Computer Science,2010,37(6):261-264.
[18]WU Y F,LI S J,QIN M K,et al.Construction and analysis of text-dependenttreebank in Chinese and English [J].Journal of Chinese Information Processing,2018,32(1):75-82.
[19]LIU K,WANG H L.A study on the coherence of automatic abstracting based on textual rhetorical structure [J].Journal of Chinese Information Processing,2019,33(1):82-89.
[20]DING G D,BAI S,WANG B.A survey of statistical language modeling methods for text retrieval [J].Journal of Computer Research and Development,2006,43(5):769-776.
[21]TAO J H,HUA Y M.Chinese Colloquial rule synthesis system based on PSOLA technology [J].Journal of Nanjing University (Natural Science),1998(1):85-92.
[22]WANG K L.Research on Uyghur syllable speech recognition and recognition primitives [J].Computer Science,2003,30(7):182-184.
[23]LIU Y Q,ZHANG M,MA S P.Research on network data cleaning for information retrieval [J].Journal of Chinese Information Processing,2006,20(3):70-77.
[24]CAO Z J,LI Z S,LIU C T.Research on question understanding in automatic Q&A system [J].Computer Science,2005(11):160-162,232.
[25]HAN X P,QI Z Y,TIAN Y,et al.An encyclopedia Q&A system based on domain semantics information[C]//Advances of Computational Linguistics in China.2009.
[26]LIU K,ZHANG Y Z,JI G L.Research progress and prospect of knowledge Q&A system based on representation learning [J].ACTA AutomaticSinica,2016,42(6):807-818.
[27]LI M X,ZONG C Q.Summarization on machine translation technology convergence [J].Journal of Chinese Information Processing.2010,24(4):74-85.
[28]SUN C K,ZHONG Y X.Summarization generation and related techniques in natural language processing [J].Computer Science,1999,26(10):16-19.
[29]LIU L Q,ZHENG F,WU W H.Acoustic modeling of Mandarin sound recognition based on small data [J].Journal ofTsing Hua University (Science and Technology),2008,48(4):604-607.
[30]CUNHA E,MAGNO G,CAETANO J.Fake news as we feel it:perception and conceptualization of the term “fake news” in the media[C]//International Conference on Social Informatics.2018:151-166.
[31]LI Q,HU Q,LU Y,et al.Personal and Ubiquitous Computing,2019.Multi-level word features based on CNN for fake news detection in cultural communication [J].Personal and Ubiquitous Computing,2020(24):259-272.
[32]VOLKOVA S,SHAFFER K,JANG J Y,et al.Separating facts from fiction:Linguistic models to classify suspicious and trusted news posts on twitter[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2018:647-653.
[33]RASHKIN H,CHOI E,JANG J Y,et al.Truth of varying shades:Analyzing language in fake news and political fact-checking[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:2931-2937.
[34]MA J,GAO W,MITRA P,et al.Detecting Rumors from Microblogs with Recurrent Neural Networks[C]//IJCAI.2016:3818-3824.
[35]PISAREVSKAYA D.Deception Detection in News Reports in the Russian Language:Lexics and Discourse[C]//EMNLP.2017:74-79.
[36]QIAN F,GONG C,SHARMA K,et al.Neural User Response Generator:Fake News Detection with Collective User Intelligence[C]//IJCAI.2018:3834-3840.
[37]WANG W Y.“Liar,Liar Pants on Fire”:A New Benchmark Dataset for Fake News Detection[R].2017.
[38]ZUBIAGA A,LIAKATA M,PROCTER R N.Exploiting Context forRumour Detection in Social Media[C]//International Conference on Social Informatics.2017:109-123.
[39]CAZALENS S,LEBLAY J,LAMARRE P,et al.Computational Fact Checking:A Content Management Perspective [J].Proceedings of the VLDB Endowment,2018,11(12):2110-2113.
[40]BONDIELLI A,MARCELLONI F.A survey on fake news andrumour detection techniques [J].Information Sciences,2019,497:38-55.
[41]NGUYEN D M,DO T H,CALDERBANK R,et al.Fake News Detection using Deep Markov Random Fields[C]//HLT-NAACL.2019:1391-1400.
[42]RUBIN V L,CHEN Y,CONROY N J.Deception detection for news:three types of fakes[C]//Proceedings of the 78th ASIS&T Annual Meeting:Information Science with Impact:Research in and for the Community.2015:83.
[43]DE SARKAR S,YANG F,MUKHERJEE A.Attending Sentences to detect Satirical Fake News[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:3371-3380.
[44]CONFORTI C,COLLIER N.Towards Automatic Fake News Detection:Cross-Level Stance Detection in News Articles[C]//FEVER.2018:40-49.
[45]LIU Z Y,ZHANG L,CUNCHAO T U, et al.Statistical Semantic analysis of Chinese social media rumors [J].Science China:Information Science,2015,45(12):1536-1546.
[46]ZU K L,ZHAO M L,GUO K,et al.Research on Sina Weibo rumor detection [J].Journal of Chinese Information Processing,2017,31(3):198-204.
[47]DAGAN I,GLICKMAN O,MAGNINI B.The PASCALRecognising Textual Entailment Challenge [C]//MLCW 2005.2006:177-190.
[48]ZELLERS R,BISK Y,SCHWARTZ R,et al.SWAG:A Large-Scale Adversarial Dataset for Grounded Commonsense Inference[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018.
[49]SMIRNOV D.Neural Network-Based Models with Commonsense Knowledge for Machine Reading Comprehension[C]//Student Research Workshop.2019:90-94.
[50]CHEN S Y,LIN X,XIAO Y H,et al.Sentiment Commonsense Induced Sequential Neural Networks for Sentiment Classification[C]//Proceedings of the 28th ACM International Confe-rence on Information and Knowledge Management.2019:1021-1030.
[51]VILARES D,PENG H,SATAPATHY R,et al.BabelSenticNet:A Commonsense Reasoning Framework for Multilingual Sentiment Analysis[C]//2018 IEEE Symposium Series on Computational Intelligence (SSCI).2018:1292-1298.
[52]MULLENBACH J,GORDON J,PENG N,et al.Do Nuclear Submarines Have Nuclear Captains? A Challenge Dataset for Commonsense Reasoning over Adjectives and Objects[C]//EMNLP-IJCNLP.2019:6054-6060.
[53]BIN N Y,AI A S,KWOK K,et al.Commonsense inference in human-robot communication[C]//Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing.2019:104-112.
[54]RUDINGER R,VAN DURME B.Ordinal Common-sense Inference [J].MIT Press Journals,2017(5):379-395.
[55]CARLSON M.The robotic reporter:Automated journalism and the redefinition of labor,compositional forms,and journalistic authority [J].Digital journalism,2015,3(3):416-431.
[56]LINDEN C G.Decades of Automation in the Newsroom:Why are there still so many jobs in journalism? [J].Digital Journa-lism,2017,5(2):123-140.
[57]BLEI D M,NG A Y,JORDAN M I.Latentdirichlet allocation [J].Journal of Machine Learning Research,2003,3(Jan):993-1022.
[58]TEH Y W,JORDAN M I, BEAL M J,et al.Sharing clusters among related groups:Hierarchical Dirichlet processes[C]//Advances in Neural Information Processing Systems.2005:1385-1392.
[59]ZHANG H,BOONS F,BATISTA-NAVARRO R.Whose story is it anyway? Automatic extraction of accounts from news articles [J].Information Processing and Management,2019,56(5):1837-1848.
[60]GONG J,WEN R,ZHANG P.An Automatic Generation Method of Sports News Based on Knowledge Rules[C]//2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS).2017:499-502.
[61]CHEN X M,GAO C,GUAN X H.A method of LDA subject model for opinion extraction in Internet [J].Library and Information Service,2015,59(21):21-26.
[62]YAN Y Y,TAO Y B,LIN H.Interactive theme modeling based on Hierarchical Johann Peter Gustav Lejeune Dirichlet process [J].Journal of Software,2016(5):1114-1126.
[63]BAI J F.Online news aggregation based on hierarchical topic model [D].Hangzhou:Zhengjiang University,2015.
[64]ZHENG Y X.Research on personalized recommendation of micro-blog news based on probabilistic topic model [D].Chongqing:Chongqing University,2015.
[65]KRIEKEN K VAN,HOEKEN H.Blended viewpoints,mediated witnesses:A cognitive linguistic approach to news narratives [J].Viewpoint and the fabric of meaning:Form and use of viewpoint tools across languages and modalities,2016(1):145-168.
[66]SANDERS J,VAN KRIEKEN K.Traveling through narrative time:How tense and temporaldeixis guide the representation of time and viewpoint in news narratives 1 Introduction [J].Cognitive Linguistics,2019,30(2):281-304.
[67]KRIEKEN K V,SANDERS J.Smoothly moving through Mental Spaces:Linguistic patterns of viewpoint transfer in news narratives [J].Cognitive Linguistics,2019,30(3):499-529.
[68]CASWELL D,DÖRR K.Automated Journalism 2.0:EventDriven Narratives From simple descriptions to real stories [J].Journalism practice,2018,12(4):477-496.
[69]DAI Z,TANEJA H,HUANG R.Fine-grained Structure-based News Genre Categorization[C]//Proceedings of the Workshop Events and Stories in the News.2018:61-67.
[70]CHANDRASEKHARAN E,SAMORY M,JHAVER S,et al. The Internet’s Hidden Rules:An Empirical Study ofReddit Norm Violations at Micro,Meso,and Macro Scales [C]//ACM-HCI.2018:32.
[71]WASEEM Z,HOVY D.Hateful symbols or hateful people? predictive features for hate speech detection on twitter[C]//Proceedings of the NAACL Student Research Workshop.2016:88-93.
[72]AKEN B V,RISCH J,KRESTEL R,et al.Challenges for toxic comment classification:An in-depth error analysis[C]//Proceedings of the 2nd Workshop on Abusive Language Online (co-located with EMNLP).2018:33-42.
[73]MISHRA P,DEL TREDICI M,YANNAKOUDAKIS H,et al.Author profiling for abuse detection[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:1088-1098.
[74]WU F,HUANG Y.Collaborative multi-domain sentiment classification[C]//IEEE International Conference on Data Mining.2015:459-468.
[75]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks [J].The Journal of Machine Learning Research,2016,17(1):2030-2096.
[76]CHEN J,CHEN J,YU Z.Incorporating Structured Commonsense Knowledge in Story Completion[C]//Proceedings of the 2nd Workshop on NLP for Internet Freedom:Censorship,Disinformation,and Propaganda.2019:76-82.
[77]PITSILIS G K,RAMAMPIARO H,LANGSETH H.Detecting Offensive Language in Tweets Using Deep Learning [R].2018.
[78]KARAN M,SNAJDER J.Cross-Domain Detection of Abusive Language Online[C]//Proceedings of the 2nd Workshop on Abusive Language Online (ALW2).2018:132-137.
[79]ZAMPIERI M,MALMASI S,NAKOV P,et al.SemEval-2019 Task 6:Identifying and Categorizing Offensive Language in Social Media (OffensEval)[C]//SemEval-2019.2019:75-86.
[80]LIU P,LI W,ZOU L.NULI at SemEval-2019 Task 6:Transfer Learning for Offensive Language Detection using Bidirectional Transformers[C]//SemEval-2019.2019:87-91.
[81]WIEDEMANN G,RUPPERT E,TECHNOLOGY L,et al. UHH-LT at SemEval-2019 Task 6:Supervisedvs .Unsupervised Transfer Learning for Offensive Language Detection Dense Dense (n units)[C]//SemEval-2019.2019:782-787.
[82]KUMAR R.Bhanodaig at SemEval-2019 Task 6:Categorizing Offensive Language in social media[C]//SemEval-2019.2019:547-550.
[83]BANSAL H.HAD-Tubingen at SemEval-2019 Task 6:Deep Learning Analysis of Offensive Language on Twitter:Identification and Categorization[C]//SemEval-2019.2019:622-627.
[84]SWAMY S D,JAMATIA A.NITAgartala NLP Team at SemEval-2019 Task 6:An Ensemble Approach to Identifying and Categorizing Offensive Language in Twitter Social Media Corpora[C]//SemEval-2019.2019:696-703.
[85]INDURTHI V,SYED B,SHRIVASTAVA M.Fermi at SemEval-2019 Task 6:Identifying and Categorizing Offensive Language in Social Media using Sentence Embeddings[C]//SemEval-2019.2019:611-616.
[86]ZHANG Y H,LIN X W.A review of affective computing [J].Computer Science,2008(5):9-12.
[87]WANG Y N,ZHOU L M,LUO Y J.The establishment and evaluation of Chinese affective word system [J].Chinese Mental Health Journal,2008,22(8):608-612.
[88]ZHANG C G,LIU P Y,et al.A method of emotion analysis based on polar dictionary [J].Journal of Shandong University:Science Edition,2012(3):50-53.
[89]XU L H,LIN H F,PAN Y,et al.The construction of emotional vocabulary noumenon [J].Journal of the China Society for Scientific and Technical Information,2008,27(2):180-185.
[90]HUANG F L,YU G,ZHANG J L,et al.Emotion mining of microblog theme based on social relationship [J].Journal of Software.2017,28(3):694-707.
[91]JIANG T J,WAN C X,LIU D X,et al.Semantic analysis-based evaluation object-affective word pair extraction [J].Chinese Journal of Computers,2017,40(3):617-633.
[92]LIU D X,NIE J Y,ZHANG J,et al.Chinese micro-blog sentiment word extraction:N-GRAM feature classification method [J].Journal of Chinese Information Processing,2016,30(4):193-205.
[93]JIANG L,YU M,ZHOU M,et al.Target-dependent Twitter Sentiment Classification[C]//Meeting of the Association for Computational Linguistics:Human Language Technologies.2011:151-160.
[94]XUE Y X,LI S S,WANG Z Q.Semi-supervised emotion classification based on social relation networks [J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(1):61-66.
[95]PANG B,LEE L,VAITHYANATHAN S.Thumbs up?:sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing.2002:79-86.
[96]TURNEY,PETER D,LITTMAN,et al.Measuring Praise and Criticism:Inference of Semantic Orientation from Association[J].ACM Transactions on Information Systems,2003,21(4):315-346.
[97]LI S,WANG Z,LEE S Y M,et al.Sentiment Classification with Polarity Shifting Detection[C]//2013 International Conference on Asian Language Processing (IALP).IEEE Computer Society,2013:129-132.
[98]WU X K.Reconstruction and direction of journalism and communication research in the era of big data [J].Social Sciences in Nanjing,2016(11):94-102.
[99]GRIFFIN E A.2012.A first look at communication theory [M].New York:McGraw-Hill,2012.
[100]NARACAPILIDIS N,PAPADIAS D,PAPPIS C,et al.Compu-ter-mediated collaborative decision making:theoretical and implementation issues[C]//Hawaii International Conference on System Sciences.1999.
[101]CAMBRIA E,PORIA S,GELBUKH A,et al.Sentiment Analysis Is a Big Suitcase [J].Intelligent Systems IEEE,2017,32(6):74-80.
[1] YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236.
[2] HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163.
[3] LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73.
[4] ZHANG Hu, BAI Ping. Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification [J]. Computer Science, 2022, 49(2): 279-284.
[5] CHEN Zhi-yi, SUI Jie. DeepFM and Convolutional Neural Networks Ensembles for Multimodal Rumor Detection [J]. Computer Science, 2022, 49(1): 101-107.
[6] WANG Li-mei, ZHU Xu-guang, WANG De-jia, ZHANG Yong, XING Chun-xiao. Study on Judicial Data Classification Method Based on Natural Language Processing Technologies [J]. Computer Science, 2021, 48(8): 80-85.
[7] WU Yu, LI Zhou-jun. Survey on Retrieval-based Chatbots [J]. Computer Science, 2021, 48(12): 278-285.
[8] TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267.
[9] LU Long-long, CHEN Tong, PAN Min-xue, ZHANG Tian. CodeSearcher:Code Query Using Functional Descriptions in Natural Languages [J]. Computer Science, 2020, 47(9): 1-9.
[10] TIAN Ye, SHOU Li-dan, CHEN Ke, LUO Xin-yuan, CHEN Gang. Natural Language Interface for Databases with Content-based Table Column Embeddings [J]. Computer Science, 2020, 47(9): 60-66.
[11] SHU Yun-feng and WANG Zhong-qing. Research on Chinese Patent Summarization Based on Patented Structure [J]. Computer Science, 2020, 47(6A): 45-48.
[12] ZHANG Hao-yang and ZHOU Liang. Application of Improved GHSOM Algorithm in Civil Aviation Regulation Knowledge Map Construction [J]. Computer Science, 2020, 47(6A): 429-435.
[13] ZHANG Ying, ZHANG Yi-fei, WANG Zhong-qing and WANG Hong-ling. Automatic Summarization Method Based on Primary and Secondary Relation Feature [J]. Computer Science, 2020, 47(6A): 6-11.
[14] HU Chao-wen, YANG Ya-lian, WU Chang-xing. Survey of Implicit Discourse Relation Recognition Based on Deep Learning [J]. Computer Science, 2020, 47(4): 157-163.
[15] YU Shan-shan, SU Jin-dian, LI Peng-fei. Sentiment Classification Method for Sentences via Self-attention [J]. Computer Science, 2020, 47(4): 204-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!