Computer Science ›› 2021, Vol. 48 ›› Issue (1): 258-267.doi: 10.11896/jsjkx.200500078
• Information Security • Previous Articles Next Articles
TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin
CLC Number:
[1] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural computation,1997,9(8):1735-1780. [2] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estimation of Word Representations in Vector Space[J].arXiv:1301.3781,2013. [3] PENNINGTON J,SOCHER R,MANNING C.Glove:GlobalVectors for Word Representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing (EMNLP).2014:1532-1543. [4] DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[J].arXiv:1810.04805,2018. [5] YANG Z,DAI Z,YANG Y,et al.XLNet:Generalized Autoregressive Pretraining for Language Understanding[C]//Advances in Neural Information Processing Systems.2019:5754-5764. [6] WANG W,WANG L,TANG B,et al.Towards a Robust Deep Neural Network in Text Domain A Survey[J].arXiv:1902.07285,2019. [7] SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013. [8] PAN W B,WANG X Y.Survey on Generating Adversarial Examples[J].Journal of Software,2020,31(1):67-81. [9] ASHISH V.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [10] NIVEN T,KAO H Y.Probing Neural Network Comprehension of Natural Language Arguments[J].arXiv:1907.07355,2019. [11] KUSNER M,SUN Y,KOLKIN N,et al.From word embeddings to document distances[C]//International Conference on Machine Learning.2015:957-966. [12] HUANG G,GUO C,KUSNER M J,et al.Supervised WordMover's Distance[C]//Advances in Neural Information Processing Systems.2016:4862-4870. [13] WU L.Word mover's embedding:From word2vec to document embedding[J].arXiv:1811.01713,2018. [14] DONG Y,FU Q A,YANG X,et al.Benchmarking Adversarial Robustness[J].arXiv:1912.11852,2019. [15] MICHEL P,LI X,NEUBIG G,et al.On Evaluation of Adversarial Perturbations for Sequence-to-Sequence Models[J].ar-Xiv:1903.06620,2019. [16] GIANNA M D C,ANTONIO G,FRANCESCO R,et al.Ran-king a stream of news[C]//Proceedings of the 14th Internatio-nal Conference on World Wide Web.2005:97-106. [17] RICHARD S.Recursive deep models for semantic compositio-nality over a sentiment Treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Proces-sing.2013:1631-1642. [18] CETTOLO M,GIRARDI C,FEDERICO M.Wit3:Web inventory of transcribed and translated talks[C]//Conference of European Association for Machine Translation.2012:261-268. [19] RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:100 000+ Questions for Machine Comprehension of Text[J].arXiv:1606.05250,2016. [20] RAJPURKAR P,JIA R,LIANG P.Know What You Don'tKnow:Unanswerable Questions for SQuAD[J].arXiv:1806.03822,2018. [21] GOYAL Y,KHOT T,SUMMERS-STAY D,et al.Making the V in VQA matter:Elevating the role of image understanding in Visual Question Answering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:6904-6913. [22] BOWMAN S R,ANGELI G,POTTS C,et al.A large annotated corpus for learning natural language inference[J].arXiv:1508.05326,2015. [23] WILLIAMS A,NANGIA N,BOWMAN S R.A broad-coverage challenge corpus for sentence understanding through inference[J].arXiv:1704.05426,2017. [24] ERIK F,SANG T K,DE MEULDER F D.Introduction to the CoNLL-2003 shared task:Language-independent named entity recognition[J].arXiv:0306050,2003. [25] BELINKOV Y,BISK Y.Synthetic and natural noise both break neural machine translation[J].arXiv:1711.02173,2017. [26] GAO J,LANCHANTIN J,SOFFA M L,et al.Black-box generation of adversarial text sequences to evade deep learning classifiers[C]//2018 IEEE Security and Privacy Workshops (SPW).IEEE,2018:50-56. [27] WANG W Q,WANG R.Adversarial Examples Generation Approach for Tendency Classification on Chinese Texts[J].Journal of Software,2019,30(8):2415-2427. [28] EBRAHIMI J,LOWD D,DOU D.On adversarial examples for character-level neural machine translation[J].arXiv:1806.09030,2018. [29] EGER S,?AHIN G G,RüCKLè A,et al.Text processing like humans do:Visually attacking and shielding NLP systems[J].arXiv:1903.11508,2019. [30] PAPERNOT N,MCDANIEL P,SWAMI A,et al.Crafting adversarial input sequences for recurrent neural networks[C]//MILCOM 2016-2016 IEEE Military Communications Confe-rence.IEEE,2016:49-54. [31] GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [32] JIN D,JIN Z,ZHOU J T,et al.Is BERT Really Robust?A Strong Baseline for Natural Language Attack on Text Classification and Entailment[J].AAAI2020,arXiv:1907.11932,2019. [33] SAMANTA S,MEHTA S.Towards crafting text adversarial samples[J].arXiv:1707.02812,2017. [34] SATO M,SUZUKI J,SHINDO H,et al.Interpretable adversarial perturbation in input embedding space for text[J].arXiv:1805.02917,2018. [35] ZHANG H,ZHOU H,MIAO N,et al.Generating Fluent Adversarial Examples for Natural Languages[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:5564-5569. [36] ALZANTOT M,SHARMA Y,ELGOHARY A,et al.Generating natural language adversarial examples[J].arXiv:1804.07998,2018. [37] ZANG Y,YANG C,QI F,et al.Textual Adversarial Attack as Combinatorial Optimization[J].arXiv:1910.12196,2019. [38] REN S,DENG Y,HE K,et al.Generating natural language adversarial examples through probability weighted word saliency[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:1085-1097. [39] JIA R,LIANG P.Adversarial examples for evaluating reading comprehension systems[J].arXiv:1707.07328,2017. [40] MINERVINI P,RIEDEL S.Adversarially regularising neural nli models to integrate logical background knowledge[J].arXiv:1808.08609,2018. [41] CHENG Y,JIANG L,MACHEREY W.Robust neural machine translation with doubly adversarial inputs[J].arXiv:1906.02443,2019. [42] IYYER M,WIETING J,GIMPEL K,et al.Adversarial example generation with syntactically controlled paraphrase networks[J].arXiv:1804.06059,2018. [43] ZHAO Z,DUA D,SINGH S.Generating natural adversarial examples[J].arXiv:1710.11342,2017. [44] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein gan[J].arXiv:1701.07875,2017. [45] WALLACE E,RODRIGUEZ P,FENG S,et al.Trick me if you can:Human-in-the-loop generation of adversarial examples for question answering[J].Transactions of the Association for Computational Linguistics,2019,7(2019):387-401. [46] RIBEIRO M T,SINGH S,GUESTRIN C.Semantically equivalent adversarial rules for debugging nlp models[C]//Procee-dings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:856-865. [47] LI J,JI S,DU T,et al.Textbugger:Generating adversarial text against real-world applications[J].arXiv:1812.05271,2018. [48] EBRAHIMI J,RAO A,LOWD D,et al.Hotflip:White-box adversarial examples for text classification[J].arXiv:1712.06751,2017. [49] VIJAYARAGHAVAN P,ROY D.Generating Black-Box Ad-versarial Examples for Text Classifiers Using a Deep Reinforced Model[J].arXiv:1909.07873,2019. [50] LIANG B,LI H,SU M,et al.Deep text classification can be fooled[J].arXiv:1704.08006,2017. [51] GARDNER M,ARTZI Y,BASMOVA V,et al.Evaluating nlp models via contrast sets[J].arXiv:2004.02709,2020. [52] PRUTHI D,DHINGRA B,LIPTON Z C.Combating adversarial misspellings with robust word recognition[J].arXiv:1905.11268,2019. [53] ZHOU Y,JIANG J Y,CHANG K W,et al.Learning to discriminate perturbations for blocking adversarial attacks in text classification[J].arXiv:1909.03084,2019. [54] TANAY T,GRIFFIN L D.A New Angle on L2 Regularization[J].arXiv:1806.11186,2018. [55] PAPERNOT N,MCDANIEL P,WU X,et al.Distillation as a defense to adversarial perturbations against deep neural networks[C]//2016 IEEE Symposium on Security and Privacy(SP).IEEE,2016:582-597. [56] MIYATO T,DAI A M,GOODFELLOW I.Adversarial training methods for semi-supervised text classification[J].arXiv:1605.07725,2016. [57] MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[J].arXiv:1706.06083,2017. [58] LI L,QIU X.TextAT:Adversarial Training for Natural Language Understanding with Token-Level Perturbation[J].arXiv:2004.14543,2020. [59] DINAN E,HUMEAU S,CHINTAGUNTA B,et al.Build itbreak it fix it for dialogue safety:Robustness from adversarial human attack[J].arXiv:1908.06083,2019. [60] HE W,WEI J,CHEN X,et al.Adversarial example defense:Ensembles of weak defenses are not strong[C]//11th USENIX Workshop on Offensive Technologies (WOOT 17).2017. [61] KO C Y,LYU Z,WENG T W,et al.POPQORN:Quantifying robustness of recurrent neural networks[J].arXiv:1905.07387,2019. [62] SHI Z,ZHANG H,CHANG K W,et al.Robustness verification for transformers[J].arXiv:2002.06622,2020. [63] GOODMAN D,XIN H,YANG W,et al.Advbox:a toolbox to generate adversarial examples that fool neural networks[J].arXiv:2001.05574,2020. [64] ATHALYE A,CARLINI N,WAGNER D.Obfuscated gradi-ents give a false sense of security:Circumventing defenses to adversarial examples[J].arXiv:1802.00420,2018. [65] WALLACE E,FENG S,KANDPAL N,et al.Universal adversarial triggers for nlp[J].arXiv:1908.07125,2019. [66] LIANG R G,LYU P Z,et al.A Survey of Audiovisual Deepfake Detection Techniques[J].Journal of Cyber Security,2020,5(2):1-17. [67] YU L,ZHANG W,et al.Seqgan:Sequence generative adversarial nets with policy gradient[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[9] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[10] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[11] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[12] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[13] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[14] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
[15] | CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344. |
|