Computer Science ›› 2022, Vol. 49 ›› Issue (6A): 66-73.doi: 10.11896/jsjkx.210600134

• Intelligent Computing • Previous Articles     Next Articles

Survey of the Application of Natural Language Processing for Resume Analysis

LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji   

  1. State Key Laboratory of Mathematical Engineering and Advanced Computing,Information Engineering University,Zhengzhou 450001,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:LI Xiao-wei,born in 1991,postgra-duate.His main research interests include natural language processing and information security.
    SHU Hui,born in 1974,Ph.D,professor,Ph.D supervisor.His main research interest is cyber security.
  • Supported by:
    National Key R & D Program of China:Special Project for Frontier Technology Innovation(2019QY1305).

Abstract: With the rapid development of information technology and the dramatic growth of digital resources,enormous resumes is generated in the Internet.It is a concern of scholars to analyze the resumes of job seekers to obtain the information of various personnel of candidates,industry categories and job recommendations.The inefficiency of manual resume analysis has promoted the wide application of natural language processing(NLP) technology in resume analysis.NLP can realize automated analysis of resumes by using artificial intelligence and computer technology to analyze,understand and process natural language.This paper systematically reviews the relevant literature in the past ten years.Firstly,the natural language processing is introduced.Then based on the principal line of resume analysis in NLP,the recent works in three aspects:resume information extraction,resume classification and resume recommendation are generalized.Finally,discussing the future development trend in this research area and summarizing the paper.

Key words: Information extraction, Natural language processing, Resume analysis, Resume classification, Resume recommendation

CLC Number: 

  • TP391
[1] ZU S,WANG X.Resume Information Extraction with a Novel Text Block Segmentation Algorithm[J].International Journal on Natural Language Computing,2019,8(5):29-48.
[2] CHOU Y,YU H.Based on the Application of Ai Technology in Resume Analysis and Job Recommendation[C]//2020 IEEE International Conference on Computational Electromagnetics(ICCEM).IEEE,2020:291-296.
[3] MATHEW L,GEORGE NC,LINET N,et al.“ats Breaker”-a System for Comparing Candidate Resume and Company Requirements[J].International Journal of Engineering Research & Technology,2020,9(6):591-594.
[4] DESHPANDE A,KHATRI D,DESHPANDE D,et al.Proposed System for Resume Analytics[J].International Journal of Engineering Research & Technology,2016,5(11):468-471
[5] MITTAL V,MEHTA P,RELAN D,et al.Methodology for Resume Parsing and Job Domain Prediction.[J].Journal of Statistics & Management Systems,2020,23(7):1265-1274.
[6] QIU X P,SUN T X,XU Y G,et al.Pre-trained Models for Natural Language Processing:A Survey[J].Science China(Technological Sciences),2020,63(10):1872-1897.
[7] ZHOU M,DUAN N,LIU S.Progress in Neural Nlp:Modeling,Learning,and Reasoning[J].Engineering,2020,6(3):275-290.
[8] CHEN D G,MA J L,MA Z P,et al.Review of Pre-trainingTechniques for Natural Language Processing[J].Journal of Frontiers of Computer Science and Technology,2021,15(8):1359-1389.
[9] WANG Y,DENG H,LI X Y,et al.A review of natural language processing application in construction engineering[J].Journal ofGraphics,2020,41(4):501-511.
[10] DEEPAK G,TEJA V,SANTHANAVIJAYAN A.A NovelFirefly Driven Scheme for Resume Parsing and Matching Based on Entity Linking Paradigm[J].Journal of Discrete Mathematical Sciences and Cryptography,2020,23(1):157-165.
[11] GUO X Y,HE T T.Survey about Research on Information Extraction[J].Computer Science,2015,42(2):14-17,38.
[12] OTTER D,MEDINA J,KALITA J.A Survey of the Usages of Deep Learning for Natural Language Processing[J].IEEE Transactions on Neural Networks and Learning Systems,Neural Networks and Learning Systems,2021,32(2):604-624.
[13] CHEN C B.Curriculum Vitae Recognition System base on Identification OF Semi-structured Text [D].Beijing:Beijing University of Post and Telecommunications,2008.
[14] JIANG Z,ZHANG C,XIAO B,et al.Research and Implementation of Intelligent Chinese Resume Parsing[C]//2009 Wri International Conference on Communications and Mobile Computing.IEEE,2009:588-593.
[15] ZHANG C,WU M,LI C G,et al.Resume Parser:Semi-structured Chinese Document Analysis[C]//2009 Wri World Congress on Computer Science and Information Engineering.IEEE,2009:12-16.
[16] MU Y,WANG Y,GUO J.Extracting Software Functional Requirements From Free Text Documents[C]//2009 International Conference on Information and Multimedia Technology.IEEE,2009:194-198.
[17] DARSHAN P M.Ontology Based Information Extraction From Resume[C]//2017 International Conference on Trends in Electronics and Informatics(ICEI).2017:43-47.
[18] TOBING B C L,SUHENDRA I R,HALIM C.Catapa Resume Parser:End to End Indonesian Resume Extraction[C]//Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval.2019:68-74.
[19] PAWAR S,SRIVASTAVA R,PALSHIKAR G K.AutomaticGazette Creation for Named Entity Recognition and Application to Resume Processing[C]//Proceedings of the 5th Acm Compute Conference:Intelligent & Scalable System Technologies.2012:1-7.
[20] YAN W T,QIAO Y P.Chinese Resume Information Extraction Based on Semi-structured Text[C]//2017 36th Chinese Control Conference(CCC).2017:11177-11182.
[21] YU K,GUAN G,ZHOU M.Resume Information Extractionwith Cascaded Hybrid Model[C]//Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics(ACĹ05).2005:499-506.
[22] GU N N,FENG J,SUN X,et al.Chinese resume information automatic extraction and recommendation algorithm[J].Computer Engineering and Applications,2017,53(18):141-148,270.
[23] YADAV V,BETHARD S.A Survey on Recent Advances inNamed Entity Recognition From Deep Learning Models[J].arXiv:1910.1147v1,2019.
[24] LI J,ZHANG H,GU X W.Framework of Vita Event Extraction and Retrieval[J].Computer Science,2012,39(7):154-160,174.
[25] CHEN J,GAO L,TANG Z.Information Extraction From Resume Documents in Pdf Format[J].Electronic Imaging,2016,2016(17):1-8.
[26] MU R,ZENG X,HAN L.A Survey of Recommender Systems Based on Deep Learning[J].IEEE Access,2019,6:69009-69022.
[27] HUANG S,LI W,ZAHNG J.Entity extraction method of re-sume information based on deep learning[J].Computer Engineering and Design,2018,39(12):3873-3878.
[28] CHEN Y,FU L,DAI Y X,et al.Research of Chinese Resume Analysis Based on Feature Fusion[J].Computer Engineering and Applications,2019,55(10):244-249.
[29] PHAM VAN L,VU NGOC S,NGUYEN VAN V.Study of Information Extraction in Resume[R].Vienna:VNU University of Engineering and Technology,2018.
[30] AYISHATHAHIRA C,SREEJITH C,RASEEK C.Combina-tion of Neural Networks and Conditional Random Fields for Efficient Resume Parsing[C]//2018 International Cet Conference on Control,Communication,and Computing(IC4).2018:388-393.
[31] KATSUTA A,H ANJAYA HA,ASATI S,et al.InfomationExtraction From English & Japanese Résumé with Neural Sequence Labelling Methods[C]//2018 The Association for Natural Language Processing.2018:1007-1010.
[32] DERNONCOURT F,LEE J Y,SZOLOVITS P.Neuroner:anEasy-to-use Program for Named-entity Recognition Based on Neural Networks[J].arXiv:1705.05487,2017.
[33] SU Y,ZHANG J,LU J.The Resume Corpus:a Large Dataset for Research in Information Extraction Systems[C]//2019 15th International Conference on Computational Intelligence and Security(CIS).2019:375-378.
[34] WANG K,LIU B S.A survey of text classification[J].DataCommunication,2019,190(3):37-47.
[35] ZAROOR A,MAREE M,SABHA M.Jrc:a Job Post and Resume Classification System for Online Recruitment[C]//2017 IEEE 29th International Conference on Tools with Artificial Intelligence(ICTAI).2017:780-787.
[36] FENG L N,ZHOU L H.Application of K-Means in the Curriculum Vitae Data[J].Computer Science,2009,36(8):226-278.
[37] HUANG X Y,ZHOU W M.A Study of Job Description Clustering Based on Latent Semantics Index[J].Network New Media Technology,2017,6(3):33-37,64.
[38] WAN J,CHEN B,SI H.Mining and Measurement of Vocational Skills and Their Association Rules Based on Big Data[C]//Proceedings of the International Conference on Digital Technology in Education.2017:59-63.
[39] XU X,QIAN H,GE C,et al.Industry classification with online resume big data:A design science approach[J].Information & Management,2020,57(5):103-182.
[40] LAMBA D,GOYAL S,CHITRESH V,et al.An IntegratedSystem for Occupational Category Classification based on Resume and Job Matching[C]//Proceedings of the International Conference on Innovative Computing & Communications(ICICC).2020.
[41] JAVED F,MCNAIR M,JACOB F,et al.Towards a job title classification system[J].arXiv:1606.00917,2016.
[42] GOPALAKRISHNA S T,VIJAYARAGHAVAN V.Automa-ted Tool for Resume Classification Using Sementic Analysis[J].International Journal of Artificial Intelligence and Applications(IJAIA),2019,10(1):11-23.
[43] SAYFULLINA L,MALMI E,LIAO Y,et al.Domain adaptation for resume classification using convolutional neural networks[C]//International Conference on Analysis of Images,Social Networks and Texts.Cham:Springer,2017:82-93.
[44] NASSER S,SREEJITH C,IRSHAD M.Convolutional NeuralNetwork with Word Embedding Based Approach for Resume Classification[C]//2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research(ICETIETR).IEEE,2018:1-6.
[45] JIECHIEU K F F,TSOPZE N.Skills prediction based on multi-label resume classification using CNN with model predictions explanation[J].Neural Computing and Applications,2021,33(10):5069-5087.
[46] HAO K.Design and Implementation of Job RecommendationSystem Based on Resume Data [D].Nanjing:Southeast University,2018.
[47] CERNIAN A,CARSTOIU D,MARTIN B.Semi-automatic Tool for Parsing Cvs and Identifying Candidates' Abilities and Competencies[C]//EMASS 2016.2016.
[48] CHANDOLA D,GARG A,MAURYA A,et al.Online Resume Parsing System Using Text Analytics[J].Journal of Multi Disciplinary Engineering Technologies(JMDET),2015,9(1):1-5.
[49] GAJALAKSHMI P,RAMESH V.Design of Automated Re-sume Extraction System Using Horspool and Karp-rabin Algorithms in Text Mining[J].International Journal of Research in Engineering Technology,2016,1(6):9-16.
[50] ROY P K,CHOWDHARY S S,BHATIA R.A Machine Learning Approach for Automation of Resume Recommendation System[J].Procedia Computer Science,2020,167:2318-2327.
[51] WANG Z,TANG X,CHEN D.A Resume RecommendationModel for Online Recruitment[C]//2015 11th International Conference on Semantics,Knowledge and Grids(SKG).IEEE,2015:256-259.
[52] CUI Y.Research on Two-way Recommendation of GraduateEmployment Based on Collaborative Filtering and Thematic Model [D].Beijing:Beijing Jiaotong University,2018.
[53] GUO S,ALAMUDUN F,HAMMOND T.Résumatcher:a Personalized Résumé-job Matching System[J].Expert Systems with Applications,2016,60:169-182.
[54] MOHAMED A,BAGAWATHINATHAN W,IQBAL U,et al.Smart Talents Recruiter-resume Ranking and Recommendation System[C]//2018 IEEE International Conference on Information and Automation for Sustainability(ICIAFS).2018:1-5.
[55] SIVARAMAKRISHNAN N,SUBRAMANIYASWAMY V,ARUNKUMAR S,et al.Validating Effective Resume Based on Employer's Interest with Recommendation System[J].International Journal of Pure and Applied Mathematics,2018,119(12):13261-13272.
[56] FU Z Y.Research on Computing the Fitness of Person-PostBased on Ability Evaluation and Semantic Similarity [D].Shenzhen:Shenzhen University,2018.
[57] CAO J.Design and implementation of enterprise recruitmentsystem based on text semantic similarity [D].Qufu:Qufu Normal University,2020.
[58] LI C,FISHER E,THOMAS R,et al.Competence-Level Prediction and Resume & Job Description Matching Using Context-Aware Transformer Models[J].arXiv:2011.02998,2020.
[59] WANG S,JIANG W,ZHENG L B,et al.Resume ScreeningBased on Discrete Selection Model[J].Value Engineering,2019,38(20):191-194.
[60] QIN S,XU X L,WANG C L.The Study of Resume Information Selection Basing on the Discrete Choice Model[C]//Proceedings of the 14th Annual Conference of China Management Science.2012:143-147.
[61] HONG H Y.Screening of Resumes Based on Bayesian Classifier[J].Computer Technology and Development,2012,22(7):85-87.
[62] QIU X Y.Text Classification Algorithm and its Realization inthe Campus Recruitment Management System [D].Wuhan:Wuhan University of Technology,2015.
[63] ZHANG B,CUI C Y,CUI J Z.An enterprise resume screening method based on BPNN and its application[J].Intelligent City,2016,2(5):49-52.
[64] DENG Y,LEI H,LI X,et al.An Improved Deep Neural Network Model for Job Matching[C]//2018 International Confe-rence on Artificial Intelligence and Big Data(ICAIBD).2018:106-112.
[65] YAN R,LE R,SONG Y,et al.Interview Choice Reveals Your Preference on the Market:to Improve Job-resume Matching Through Profiling Memories[C]//Proceedings of the 25th Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.2019:914-922.
[66] ZHU C,ZHU H,XIONG H,et al.Person-job Fit:Adapting the Right Talent for the Right Job with Joint Representation Lear-ning[J].ACM Transactions on Management Information Systems(TMIS),2018,9(3):1-17.
[67] QIN C,ZHU H,XU T,et al.Enhancing Person-job Fit for Ta-lent Recruitment:an Ability-aware Neural Network Approach[C]//The 41st International Acm Sigir Conference on Research &Development in Information Retrieval.2018:25-34.
[68] BIAN S,ZHAO W X,SONG Y,et al.Domain Adaptation forPerson-job Fit with Transferable Deep Global Match Network[C]//Proceedings of the 2019 Conference on Empirical Me-thods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(emnlp-ijcnlp).2019:4812-4822.
[69] DEVLIN J,CHANG M,LEE K,et al.Bert:Pre-training of Deep Bidirectional Transformers for Language Understanding[J].arXiv:1810.04805,2018.
[70] BHATIA V,RAWAT P,KUMAR A,et al.End-to-end Resume Parsing and Finding Candidates for a Job Description Using Bert[J].arXiv:1910.03089,2019.
[71] BIAN S,CHEN X,ZHAO W X,et al.Learning to Match Jobs with Resumes from Sparse Interaction Data using Multi-View Co-Teaching Network[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:65-74.
[1] WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293.
[2] YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236.
[3] HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163.
[4] ZHANG Hu, BAI Ping. Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification [J]. Computer Science, 2022, 49(2): 279-284.
[5] CHEN Zhi-yi, SUI Jie. DeepFM and Convolutional Neural Networks Ensembles for Multimodal Rumor Detection [J]. Computer Science, 2022, 49(1): 101-107.
[6] WANG Li-mei, ZHU Xu-guang, WANG De-jia, ZHANG Yong, XING Chun-xiao. Study on Judicial Data Classification Method Based on Natural Language Processing Technologies [J]. Computer Science, 2021, 48(8): 80-85.
[7] DING Ling, XIANG Yang. Chinese Event Detection with Hierarchical and Multi-granularity Semantic Fusion [J]. Computer Science, 2021, 48(5): 202-208.
[8] WU Yu, LI Zhou-jun. Survey on Retrieval-based Chatbots [J]. Computer Science, 2021, 48(12): 278-285.
[9] LU Jia-wen, YAN Li. Mapping Method from Object-relational Database to RDF(S) [J]. Computer Science, 2021, 48(10): 145-151.
[10] TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267.
[11] LU Long-long, CHEN Tong, PAN Min-xue, ZHANG Tian. CodeSearcher:Code Query Using Functional Descriptions in Natural Languages [J]. Computer Science, 2020, 47(9): 1-9.
[12] TIAN Ye, SHOU Li-dan, CHEN Ke, LUO Xin-yuan, CHEN Gang. Natural Language Interface for Databases with Content-based Table Column Embeddings [J]. Computer Science, 2020, 47(9): 60-66.
[13] ZHANG Ying, ZHANG Yi-fei, WANG Zhong-qing and WANG Hong-ling. Automatic Summarization Method Based on Primary and Secondary Relation Feature [J]. Computer Science, 2020, 47(6A): 6-11.
[14] ZHANG Hao-yang and ZHOU Liang. Application of Improved GHSOM Algorithm in Civil Aviation Regulation Knowledge Map Construction [J]. Computer Science, 2020, 47(6A): 429-435.
[15] WU Xiao-kun, ZHAO Tian-fang. Application of Natural Language Processing in Social Communication:A Review and Future Perspectives [J]. Computer Science, 2020, 47(6): 184-193.
Full text



No Suggested Reading articles found!