Computer Science ›› 2021, Vol. 48 ›› Issue (6A): 357-363.doi: 10.11896/jsjkx.201000030
• Intelligent Computing • Previous Articles Next Articles
WU Lan, WANG Han, LI Bin-quan
CLC Number:
[1] LIU H,CAO Z J,LONG M S,et al.Separate toAdapt:Open Set Domain Adaptation via Progressive Separation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:2927-2936. [2] SAITO K,KIM D,SCLAROFF S,et al.Semi-Supervised Do-main Adaptation via Minimax Entropy[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).2019:8050-8058. [3] TAN S H,JIAO J N,ZHENG W S.Weakly Supervised Open-set Domain Adaptation by Dual-domain Collaboration[C]//Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:5394-5403. [4] BOUSMALIS K,SILBERMAN N,DOHAN D,et al.Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2017:3722-3731. [5] TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial Discriminative Domain Adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2017:7167-7176. [6] HOFFMAN J,TZENG E,PARK T,et al.CyCADA:Cycle-Consistent adversarial domain adaptation[J].arXiv:1711.03213,2017. [7] SAITO K,USHIKU Y,HARADA T,et al.Adversarial dropout regularization[J].arXiv:1711.01575,2017. [8] SHU R,BUI H H,NARUI H,et al.A DIRT-T approach to un-supervised domain adaptation[J].arXiv:1802.08735,2018. [9] BOUSMALIS K,TRIGEORGIS G,SILBERMAN N,et al.Domain Separation Networks[C]//Advances in Neural Information Processing Systems.2016. [10] SUN Y,TZENG E,DARRELL T,et al.Unsupervised domain adaptation through self-supervision[J].arXiv:1909.11825,2019. [11] GHIFARY M,KLEIJN W B,ZHANG M J,et al.Deep recon-struction-classifification networks for unsupervised domain adaptation[C]//European Conference on Computer Vision.2016:597-613. [12] SAITO K,USHIKU Y,HARADA T.Asymmetric tri-training for unsupervised domain adaptation[J].arXiv:1702.08400,2017. [13] HAEUSSER P,FRERIX T,MORDVINTSEV A,et al.Associative Domain Adaptation[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).2017:2765-2773. [14] ZADROZNY B.Learning and Evaluating Classifiers Under Sample Selection Bias[C]//Proceedings of theInternational Conference on Machine Learning(ICML).Canada:ICML,2004:114-122. [15] CASEIRO R,HENRIQUES J F,MARTINS P,et al.Unsupervised Domain Adaptation by Sampling Subspaces Along the Spline Flow[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).USA:IEEE,2015:3846-3854. [16] TSAI Y,YEH Y R,WANG F Y C.Learning Cross-DomainLandmarks for Heterogeneous Domain Adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).USA:IEEE,2016:5081-5090. [17] DAI W,CHEN Y,XUE G R,et al.Translated Learning:Transfer Learning Across Different Feature Spaces[C]//Proceedings of theAnnual Conference on Neural Information Processing Systems (NIPS).Canada:NIPS,2008:353-360. [18] KANG U L,JIANG L,YANG Y,et al.Contrastive Adaptation Network for Unsupervised Domain Adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4893-4902. [19] PAN Y W,YAO T,LI Y H,et al.Transferrable PrototypicalNetworks for Unsupervised Domain Adaptation[J].arXiv:1904.11227,2019. [20] KANG G L,JIANG L,YANG Y,et al.Contrastive Adaptation Network for Unsupervised Domain Adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:4893-4902. [21] SENER O,SONG H O,SAXENA A,et al.Learning Transferrable Representations for Unsupervised Domain Adaptation.Domain Separation Networks[C]//Advances in Neural Information Processing Systems.2016. [22] GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-Adversarial Training of Neural Networks[C]//Journal of Machine Learning Research.2016:1-35. [23] GANIN Y,LEMPISKY V.Unsupervised domain adaptation by backpropagation[C]//International Conference on Machine Learning.2015:1180-1189. [24] ZHANG R,ISOLA P,EFROS A A.Colorful image colorization[J].European Conference on Computer Vision,2016,9907:649-666. [25] LARSSON G,MAIRE M,SHAKHNAROVICH G.Learningrepresentationsfor automatic colorization[J].European Confe-rence on Computer Vision,2016,9908:577-593. [26] VONDRICK C,SHRIVASTAVA A,FATHI A,et al.Tracking Emerges by Colorizing Videos[C]//Proceedings of the Euro-pean Conference on Computer Vision.2018:391-408. [27] NOROOZI M,FAVARO P.Unsupervisedlearning of visual representations by solving jigsaw puzzles[J].European Conference on Computer Vision,2016,9910:69-84. [28] DOERSCH C,GUPTA A,EFROS A A.Unsupervised visualrepresentation learning by context prediction[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1422-1430. [29] JENNI I,FAVARO P.Self-Supervised Feature Learning byLearning to Spot Artifacts[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2733-2742. [30] GIDARIS S,SINGH P,KOMODAKIS N.Unsupervised Representation learning by predicting image rotations[J].arXiv:1803.07728,2018. [31] PATHAK D,KRAHENBUHL P,DONAHUE J,et al.Contextencoders:Feature learning by inpainting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016:2536-2544. [32] GIDARIS S,SINGH P,KOMODAKIS N.Unsupervised representation learning by predicting image rotations[J].arXiv:1803.07728,2018. |
[1] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[2] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[3] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
[4] | GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao. Hybrid Recommender System Based on Attention Mechanisms and Gating Network [J]. Computer Science, 2022, 49(6): 158-164. |
[5] | PENG Yun-cong, QIN Xiao-lin, ZHANG Li-ge, GU Yong-xiang. Survey on Few-shot Learning Algorithms for Image Classification [J]. Computer Science, 2022, 49(5): 1-9. |
[6] | TAN Zhen-qiong, JIANG Wen-Jun, YUM Yen-na-cherry, ZHANG Ji, YUM Peter-tak-shing, LI Xiao-hong. Personalized Learning Task Assignment Based on Bipartite Graph [J]. Computer Science, 2022, 49(4): 269-281. |
[7] | ZUO Jie-ge, LIU Xiao-ming, CAI Bing. Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion [J]. Computer Science, 2022, 49(3): 197-203. |
[8] | ZHANG Shu-meng, YU Zeng, LI Tian-rui. Transferable Emotion Analysis Method for Cross-domain Text [J]. Computer Science, 2022, 49(3): 218-224. |
[9] | PAN Zhi-hao, ZENG Bi, LIAO Wen-xiong, WEI Peng-fei, WEN Song. Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2022, 49(3): 294-300. |
[10] | SHAO Hai-lin, JI Yi, LIU Chun-ping, XU Yun-long. Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network [J]. Computer Science, 2022, 49(2): 248-255. |
[11] | LI Da, LEI Ying-ke, ZHANG Hai-chuan. Outdoor Fingerprint Positioning Based on LTE Networks [J]. Computer Science, 2021, 48(6A): 404-409. |
[12] | XIONG Zhao-yang, WANG Ting. Image Recognition for Building Components Based on Convolutional Neural Network [J]. Computer Science, 2021, 48(6A): 51-56. |
[13] | LIU Yu-tong, LI Peng, SUN Yun-yun, HU Su-jun. Image Recognition with Deep Dynamic Joint Adaptation Networks [J]. Computer Science, 2021, 48(6): 131-137. |
[14] | MA Chuang, TIAN Qing, SUN He-yang, CAO Meng, MA Ting-huai. Unsupervised Domain Adaptation Based on Weighting Dual Biases [J]. Computer Science, 2021, 48(2): 217-223. |
[15] | ZHOU Yan, CHEN Shao-chang, WU Ke, NING Ming-qiang, CHEN Hong-kun, ZHANG Peng. SCTD 1.0:Sonar Common Target Detection Dataset [J]. Computer Science, 2021, 48(11A): 334-339. |
|