Computer Science ›› 2022, Vol. 49 ›› Issue (3): 218-224.doi: 10.11896/jsjkx.210400034
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Shu-meng1, YU Zeng1, LI Tian-rui1,2
CLC Number:
[1]REBUFFI S A,BILEN H,VEDALDI A.Learning multiple vi-sual domains with residual adapters[C]//Proceedings of the 31st Neural Information Processing Systems.2017:506-516. [2]YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferableare features in deep neural networks?[J].Eprint Arxiv,2014,27:3320-3328. [3]HOWARD J,RUDER S.Universal language model fine-tuning for text classification[J].arXiv:1801.06146,2018. [4]MIYATO T,DAI A M,GOODFELLOW I.Adversarial training methods for semi-supervised text classification[J].arXiv:1605.07725,2016. [5]YANG M,ZHU D,CHOW K P.A topic model for building fine-grained domain-specific emotion lexicon[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers).2014:421-426. [6]XU J,XU R,ZHENG Y,et al.Chinese emotion lexicon developing via multi-lingual lexical resources integration[C]//International Conference on Intelligent Text Processing and Computational Linguistics.Berlin:Springer,2013:174-182. [7]AMAN S,SZPAKOWICZ S.Identifying expressions of emotion in text[C]//International Conference on Text,Speech and Dialogue.Berlin:Springer,2007:196-205. [8]LI D,CAO F Y,CAO Y D,et al.Text Sentiment ClassificationBased on Phrase Patterns[J].Computer Science,2008,35(4):132-134. [9]LEE S Y M,CHEN Y,HUANG C R.A text-driven rule-based system for emotion causedetection[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.2010:45-53. [10]LI W,XU H.Text-based emotion classification using emotion cause extraction[J].Expert Systems with Applications,2014,41(4):1742-1749. [11]GAO K,XU H,WANG J.A rule-based approach to emotion cause detection for Chinese micro-blogs[J].Expert Systems with Applications,2015,42(9):4517-4528. [12]ZHAO J,DONG L,WU J,et al.Moodlens:an emoticon-basedsentiment analysis system for Chinese tweets[C]//Proceedings of the 18th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.2012:1528-1531. [13]KANG X,REN F,WU Y.Bottom up:Exploring word emotions for Chinese sentence chief sentiment classification[C]//Procee-dings of the 6th International Conference on Natural Language Processing and Knowledge Engineering (NLPKE-2010).IEEE,2010:1-5. [14]ZHANG X,LI W,LU S.Emotion detection in online social network based on multi-label learning[C]//International Confe-rence on Database Systems for Advanced Applications.Cham:Springer,2017:659-674. [15]SUN X,LI C,YE J.Chinese microblogging emotion classifica-tion based on support vector machine[C]//Fifth International Conference on Computing,Communications and Networking Technologies (ICCCNT).IEEE,2014:1-5. [16]SINTSOVA V,MUSAT C,PU P.Semi-supervised method for multi-category emotion recognition in tweets[C]//Proceedings of the 14th International Conference on Data MiningWorkshop.IEEE,2014:393-402. [17]SUTTLES J,IDE N.Distant supervision for emotion classification with discrete binary values[C]//International Conference on Intelligent Text Processing and Computational Linguistics.Berlin:Springer,2013:121-136. [18]JIANG F,LIU Y Q,LUAN H B,et al.Microblog sentimentanalysis with emoticon space model[J].Journal of Computer Science and Technology,2015,30(5):1120-1129. [19]OUYANG X,ZHOU P,LI C H,et al.Sentiment analysis using convolutional neural network[C]//Proceedings of the 5th International Conference on Computer and Information Technology;Ubiquitous Computing and Communications;Dependable,Autonomic and Secure Computing;Pervasive Intelligence and Computing.IEEE,2015:2359-2364. [20]SANTOS C D,GATTI M.Deep convolutional neural networks for sentiment analysis of short texts[C]//Proceedings of the 25th International Conference on Computational Linguistics:Technical Papers.2014:69-78. [21]KIM Y.Convolutional Neural Networks for Sentence Classification[J].arXiv:1408.5882,2014. [22]CHIU J P C,NICHOLS E.Named entity recognition with bidirectional LSTM-CNNs[J].Transactions of the Association for Computational Linguistics,2016,4:357-370. [23]CHEN K,LIANG B,KE W D,et al.Chinese Micro-Blog Sentiment Analysis Based on Multi-Channels Convolutional Neural Networks[J].Journal of Computer Research and Development,2018,55(5):945-957. [24]IRSOY O,CARDIE C.Deep recursive neural networks for compositionality in language[J].Advances in Neural Information Processing Systems,2014,27:2096-2104. [25]ZHU X,SOBIHANI P,GUO H.Long short-term memory over recursive structures[C]//Proceedings of the 32th International Conference on Machine Learning.PMLR,2015:1604-1612. [26]BRAHMA S.Improved sentence modeling using suffix bidirectional LSTM[J].arXiv:1805.07340,2018. [27]DU Y,HE M,WANG L,et al.Wasserstein based transfer network for cross-domain sentiment classification[J].Knowledge-Based Systems,2020,204:106162. [28]LIU J,ZHENG S,XU G,et al.Cross-domain sentiment aware word embeddings for review sentiment analysis[J].Internatio-nal Journal of Machine Learning and Cybernetics,2020,12:343-354. [29]BLITZER J,DREDZE M,PEREIRA F.Biographies,bollywood,boom-boxes and blenders:Domain adaptation for sentiment classification[C]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics.2007:440-447. [30]PAN S J,NI X,SUN J T,et al.Cross-domain sentiment classification via spectral feature alignment[C]//Proceedings of the 19th International Conference on World Wide Web.2010:751-760. [31]DU C,SUN H,WANG J,et al.Adversarial and domain-aware bert for cross-domain sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:4019-4028. [32]BORGWARDT K M,GRETTON A,RASCH M J,et al.In-tegrating structured biological data by kernelmaximum mean discrepancy[J].Bioinformatics,2006,22(14):49-57. [33]PENG M,ZHANG Q,JIANG Y,et al.Cross-domain sentiment classification with target domain specific information[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018:2505-2513. [34]YANG M,YIN W,QU Q,et al.Neural attentive network forcross-domain aspect-level sentiment classification[C]//IEEE Transactions on Affective Computing.2019:761-775. [35]ZHANG Y,MIAO D,WANG J.Hierarchical attentiongenerative adversarial networks for cross-domain sentiment classification[J].arXiv:1903.11334,2019. [36]JI J,LUO C,CHEN X,et al.Cross-domain sentiment classification via a bifurcated-LSTM[C]//Pacific-Asia Conference on Knowledge Discovery and DataMining.Cham:Springer,2018:681-693. [37]JAWAHAR G,SAGOT B,SEDDAH D.What does BERT learn about the structure of language?[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:3651-3657. [38]CHEN X,QIU X,ZHU C.Bi-directional Long short-term memory neural networks for chinese word segmentation[C]//Proceedings of the 21st Conference on Empirical Methods in Natural Language Processing.2015:1197-1206. [39]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [40]LIU Y,OTT M,GOYAL N,et al.RoBERTa:A robustly optimized bert pretraining approach[J].arXiv:1907.11692,2019. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[8] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[9] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[10] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[11] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[12] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[13] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[14] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[15] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
|