Computer Science ›› 2022, Vol. 49 ›› Issue (9): 101-110.doi: 10.11896/jsjkx.210600174
• Database & Big Data & Data Science • Previous Articles Next Articles
XU Tian-hui1, GUO Qiang1, ZHANG Cai-ming2
CLC Number:
[1]LIU S,YAMADA M,COLLIER N,et al.Change-point detection in time-series data by relative density-ratio estimation[J].Neural Networks,2013,43(1):72-83. [2]SIFFER A,FOUQUE P A,TERMIER A,et al.Anomaly detection in streams with extreme value theory[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.USA:ACM,2017:1067-1075. [3]ZHANG Q,HU Y P,JI C,et al.Edge computing application:real-time anomaly detection algorithm for sensing data[J].Journal of Computer Research and Development,2018,55(3):524-536. [4]GUO Y S,LIU M D.Anomaly detection based on spatial-temporal trajectory data[J].Computer Science,2021,48(6A):213-219. [5]CAI R C,XIE W H,HAO Z F,et al.Abnormal crowd detection based on multi-scale recurrent neural network[J].Journal of Software,2015,26(11):2884-2896. [6]CHANDOLA V,BANERJEE A,KUMAR V.Anomaly detec-tion:a survey[J].ACM Computing Surveys,2009,41(3):1-58. [7]HODGE V,AUSTIN J.A survey of outlier detection methodo-logies[J].Artificial Intelligence Review,2004,22(2):85-126. [8]SU W X,ZHU Y L,LIU F,et al.Outliers and change-points detection algorithm for time series[J].Journal of Computer Research and Development,2014,51(4):781-788. [9]STEINWART I,HUSH D,SCOVEL C.A classification framework for anomaly detection[J].Journal of Machine Learning Research,2005,6(1):211-232. [10]ESKIN E,ARNOLD A,PRERAU M,et al.A geometric framework for unsupervised anomaly detection:Detecting intrusions in unlabeled data[M]//Applications of Data Mining in Compu-ter Security.Boston:Kluwer Academic Publishers,2002:78-99. [11]HAN D M,GUO F Z,PAN J C,et al.Visual analysis for anomaly detection in time-Series:a survey[J].Journal of Computer Research and Development,2018,55(9):1843-1852. [12]MOSKVINA V,ZHIGLJAVSKY A.An algorithm based on singular spectrum analysis for change-point detection[J].Communications in Statistics-Simulation and Computation,2003,32(2):319-352. [13]CHEN J,OUYANG J Y,FENG A Q,et al.DoS anomaly detection based on isolation forest algorithm under edge computing framework[J].Computer Science,2020,47(2):287-293. [14]KEOGH E,CHU S,HART D,et al.An online algorithm for segmenting time series [C]//Proceedings 2001 IEEE International Conference on Data Mining.USA:IEEE,2001:289-296. [15]DING X O,YU S J,WANG M X,et al.Anomaly detection on industrial time series based on correlation analysis[J].Journal of Software,2020,31(3):726-747. [16]FENG A R,WANG X R,WANG Q Y,et al.Database anomaly access detection based on principal component analysis and random tree[J].Computer Science,2020,47(9):94-98. [17]BORGWARDT K M,GRETTON A,RASCH M J,et al.Integrating structured biological data by kernel maximum mean discrepancy[J].Bioinformatics,2006,22(14):e49-e57. [18]SUGIYAMA M,SUZUKI T,NAKAJIMA S,et al.Directimportance estimation for covariate shift adaptation[J].Annals of the Institute of Statistical Mathematics,2008,60(4):699-746. [19]JIANG H,ZHANG H F,LUO Y D,at al.Adaptive threshold network traffic anomaly detection based on KL distance[J].Computer Engineering,2019,45(4):108-113. [20]KANAMORI T,HIDO S,SUGIYAMA M.A least-squares approach to direct importance estimation[J].The Journal of Machine Learning Research,2009,10(1):1391-1445. [21]AMINIKHANGHAHI S,WANG T,COOK D J.Real-timechange point detection with application to smart home time series data[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(5):1010-1023. [22]GIBBS A L,SU F E.On choosing and bounding probability me-trics[J].International Statistical Review,2002,70(3):419-435. [23]LI S,XIE Y,DAI H,et al.M-statistic for kernel change-point detection[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.USA:MIT Press,2015:3366-3374. [24]KANAMORI T,SUZUKI T,SUGIYAMA M.Computationalcomplexity of kernel-based density-ratio estimation:A condition number analysis[J].Machine Learning,2013,90(3):431-460. [25]XU L,YAN Q,XIA Y,et al.Structure extraction from texture via relative total variation[J].ACM Transactions on Graphics,2012,31(6):1-10. [26]DING Z P,ZHANG S W,CHEN J Z,et al.Structure-preserving image smoothing with L0 gradient minimization couplinggra-dient fidelity term[J].Scientia Sinica Informationis,2014, 44(11):1370-1384. [27]WANG Y Y,CHEN S C.A survey of evaluation and design for AUC based classifier[J].Pattern Recognition and Artificial Intelligence,2011,24(1):64-71. |
[1] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[2] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[3] | SHEN Shao-peng, MA Hong-jiang, ZHANG Zhi-heng, ZHOU Xiang-bing, ZHU Chun-man, WEN Zuo-cheng. Three-way Drift Detection for State Transition Pattern on Multivariate Time Series [J]. Computer Science, 2022, 49(4): 144-151. |
[4] | WU Yu-kun, LI Wei, NI Min-ya, XU Zhi-cheng. Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder [J]. Computer Science, 2022, 49(3): 144-151. |
[5] | MA Li-wen, ZHOU Ying. BBR Unilateral Adaptation Algorithm for Improving Empty Window Phenomenon in STARTUP Phase [J]. Computer Science, 2022, 49(2): 321-328. |
[6] | LENG Jia-xu, TAN Ming-pi, HU Bo, GAO Xin-bo. Video Anomaly Detection Based on Implicit View Transformation [J]. Computer Science, 2022, 49(2): 142-148. |
[7] | ZHANG Ye, LI Zhi-hua, WANG Chang-jie. Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method [J]. Computer Science, 2021, 48(9): 337-344. |
[8] | TAO Xing-peng, XU Hong-hui, ZHENG Jian-wei, CHEN Wan-jun. Hyperspectral Image Denoising Based on Nonconvex Low Rank Matrix Approximation and TotalVariation Regularization [J]. Computer Science, 2021, 48(8): 125-133. |
[9] | QING Lai-yun, ZHANG Jian-gong, MIAO Jun. Temporal Modeling for Online Anomaly Detection [J]. Computer Science, 2021, 48(7): 206-212. |
[10] | GUO Yi-shan, LIU Man-dan. Anomaly Detection Based on Spatial-temporal Trajectory Data [J]. Computer Science, 2021, 48(6A): 213-219. |
[11] | XING Hong-jie, HAO ZhongHebei. Novelty Detection Method Based on Global and Local Discriminative Adversarial Autoencoder [J]. Computer Science, 2021, 48(6): 202-209. |
[12] | ZOU Cheng-ming, CHEN De. Unsupervised Anomaly Detection Method for High-dimensional Big Data Analysis [J]. Computer Science, 2021, 48(2): 121-127. |
[13] | SHI Lin-shan, MA Chuang, YANG Yun, JIN Min. Anomaly Detection Algorithm Based on SSC-BP Neural Network [J]. Computer Science, 2021, 48(12): 357-363. |
[14] | YANG Yue-lin, BI Zong-ze. Network Anomaly Detection Based on Deep Learning [J]. Computer Science, 2021, 48(11A): 540-546. |
[15] | FENG An-ran, WANG Xu-ren, WANG Qiu-yun, XIONG Meng-bo. Database Anomaly Access Detection Based on Principal Component Analysis and Random Tree [J]. Computer Science, 2020, 47(9): 94-98. |
|