Computer Science ›› 2022, Vol. 49 ›› Issue (2): 304-311.doi: 10.11896/jsjkx.210100157
• Computer Network • Previous Articles Next Articles
ZHANG Hai-bo, ZHANG Yi-feng, LIU Kai-jian
CLC Number:
[1]KARAGIANNIS G,ALTINTAS O,EKICI E,et al.Vehicular networking:A survey and tutorial on requirements,architectures,challenges,standards and solutions[J].IEEE Communications Surveys & Tutorials,2011,13(4):584-616. [2]YANG H,ZHENG K,ZHANG K,et al.Ultra-Reliable andLow-Latency Communications for Connected Vehicles:Challenges and Solutions[J].IEEE Network,2020,34(3):92-100. [3]FAN Y F,YUAN S,CAI Y,et al.Deep Reinforcement Lear-ning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing[J].Computer Science,2021,48(5):270-276. [4]SONI T,ALI A R,GANESAN K,et al.Adaptive numerology Asolution to address the demanding QoS in 5G-V2X[C]//Proc.IEEE Wireless Communications and Networking Conference(WCNC).Barcelona,Spain:IEEE Press,2018:1-6. [5]SAITO Y,KISHIYAMA Y,BENJEBBOUR A,et al.Non-or-thogonal multiple access (NOMA) for cellular future radio access[C]//2013 IEEE 77th Vehicular Technology Conference (VTC Spring).Dresden:IEEE Press,2013:1-5. [6]DI B,SONG L,LI Y,et al.V2X meets NOMA:Non-orthogonal multiple access for 5G-enabled vehicular networks[J].IEEE Wireless Communation,2017,24(6):14-21. [7]DI B,SONG L,LI Y,et al.Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems[J].IEEE Journal on Selected Areas in Communications,2017,35(10):2383-2397. [8]DI B,SONG L,LI Y,et al.NOMA-based low-latency and highreliable broadcast communications for 5G V2X services[C]//IEEE GLOBECOM.Singapore:IEEE Press,2017:1-6. [9]WANG B,ZHANG R,CHEN C,et al.Interference hypergraph-based 3D matching resource allocation protocol for NOMAV2X networks[J].IEEE Access,2019,7:90789-90800. [10]TANG L,XIAO J,ZHAO G F,et al.Energy Efficiency Based Dynamic Resource Allocation Algorithm for Cellular Vehicular Based on Non-Orthogonal Multiple Access[J].Journal of Electronics and Information Technology,2020,42(2):526-533. [11]ABDELHAMID S,HASSANEIN H S,TAKAHARA G.On-Road Caching Assistance for Ubiquitous Vehicle-Based Information Services[J].IEEE Transactions on Vehicular Technology,2015,64(12):5477-5492. [12]BLASZCZYSZYN B,GIOVANIDIS A.Optimal geographic caching in cellular networks[C]//2015 IEEE International Confe-rence on Communications.London:IEEE Press,2015:3358-3363. [13]HIEU N T,FRANCESCO M D,YLAJAASKI A.Virtual Ma-chine Consolidation with Multiple Usage Prediction for Energy-Efficient Cloud Data Centers[J].IEEE Transactions on Services Computing,2020,13(1):186-199. [14]YI P,LI G,ZHANG Z.Energy Optimized Implicit Collaborative Caching Scheme for Content Centric Networking[J].Journal of Electronics and Information Technology,2018,40(4):770-777. [15]LIU F,MA Z,WANG B,et al.A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data Center[J].IEEE Access,2020,8:53-67. [16]SADIO O,NGOM I,LISHOU C.Design and Prototyping of a Software Defined Vehicular Networking[J].IEEE Transactions on Vehicular Technology,2020,69(1):842-850. [17]DEHGHAN M,JING B,SEETHARAM A,et al.On the complexity of optimal routing and content caching in heterogeneous networks[C]//2015 IEEEConference on Computer Communications (INFOCOM).Hong Kong:IEEE Press,2015:936-944. [18]CUI Y,YANG Z,XIAO S,et al.Traffic-Aware Virtual Machine Migration in Topology-Adaptive DCN[J].IEEE/ACM Transactions on Networking,2017,25(6):3427-3440. [19]BOUGHZALA B,ALI R B.OpenFlow supporting interdomain virtual machine migration[C]//2011 Eighth International Conference on Wireless and Optical Communications Networks (WOCN).Paris:IEEE Press,2011:1-7. [20]LIU J,LI Y,JIN D.SDN-based live VM migration across datacenters[C]//SIGCOMM Conference.Chicago:IEEE Press,2014:583-584. [21]WANG H,LI Y,ZHANG Y,et al.Virtual Machine Migration Planning in Software-Defined Networks[J].IEEE Transactions on Cloud Computing,2019,7(4):1168-1182. [22]LI J,CHEN W,XIAO M,et al.Efficient Video Pricing and Caching in Heterogeneous Networks[J].IEEE Transactions on Vehicular Technology,2016,65(10):8744-8751. [23]WANG C,LIANG C,YU F R,et al.Computation Offloadingand Resource Allocation in Wireless Cellular Networks With Mobile Edge Computing[J].IEEE Transactions on Wireless Communications,2017,16(8):4924-4938. [24]ROTA G C.The number of partitions of a set[J].The American Mathematical Monthly,1964,71:498-504. [25] HUANG Y,TAN T,WANG N,et al.Resource Allocation For D2D Communications With A Novel Distributed Q-Learning Algorithm In Heterogeneous Networks[C]//2018 International Conference on Machine Learning and Cybernetics (ICMLC).Chengdu:IEEE Press,2018:533-537. [26]HAO Y,CHEN M,HU L,et al.Energy Efficient Task Caching and Offloading for Mobile Edge Computing[J].IEEE Access,2018,6:11365-11373. [27]MISRA S,SAHA N.Detour:Dynamic task offloading in software-defined fog for IoT applications[J].IEEE Journal on Selected Areas in Communications,2019,37(5):1159-1166. [28]ELGENDY I A,ZHANG W,TIAN Y,et al.Resource allocation and computation offloading with data security for mobile edge computing[J].Future Generation Computer Systems-The International Journal of Escience,2019,100:531-541. |
[1] | XU Tian-hui, GUO Qiang, ZHANG Cai-ming. Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance [J]. Computer Science, 2022, 49(9): 101-110. |
[2] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[3] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[4] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[5] | YU Bin, LI Xue-hua, PAN Chun-yu, LI Na. Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning [J]. Computer Science, 2022, 49(7): 248-253. |
[6] | LI Meng-fei, MAO Ying-chi, TU Zi-jian, WANG Xuan, XU Shu-fang. Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient [J]. Computer Science, 2022, 49(7): 271-279. |
[7] | CHANG Bing-guo, SHI Hua-long, CHANG Yu-xin. Multi Model Algorithm for Intelligent Diagnosis of Melanoma Based on Deep Learning [J]. Computer Science, 2022, 49(6A): 22-26. |
[8] | FANG Tao, YANG Yang, CHEN Jia-xin. Optimization of Offloading Decisions in D2D-assisted MEC Networks [J]. Computer Science, 2022, 49(6A): 601-605. |
[9] | LIU Zhang-hui, ZHENG Hong-qiang, ZHANG Jian-shan, CHEN Zhe-yi. Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems [J]. Computer Science, 2022, 49(6A): 619-627. |
[10] | XIE Wan-cheng, LI Bin, DAI Yue-yue. PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing [J]. Computer Science, 2022, 49(6): 3-11. |
[11] | SHEN Shao-peng, MA Hong-jiang, ZHANG Zhi-heng, ZHOU Xiang-bing, ZHU Chun-man, WEN Zuo-cheng. Three-way Drift Detection for State Transition Pattern on Multivariate Time Series [J]. Computer Science, 2022, 49(4): 144-151. |
[12] | WU Yu-kun, LI Wei, NI Min-ya, XU Zhi-cheng. Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder [J]. Computer Science, 2022, 49(3): 144-151. |
[13] | LENG Jia-xu, TAN Ming-pi, HU Bo, GAO Xin-bo. Video Anomaly Detection Based on Implicit View Transformation [J]. Computer Science, 2022, 49(2): 142-148. |
[14] | ZHANG Ye, LI Zhi-hua, WANG Chang-jie. Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method [J]. Computer Science, 2021, 48(9): 337-344. |
[15] | QING Lai-yun, ZHANG Jian-gong, MIAO Jun. Temporal Modeling for Online Anomaly Detection [J]. Computer Science, 2021, 48(7): 206-212. |
|