Computer Science ›› 2022, Vol. 49 ›› Issue (7): 271-279.doi: 10.11896/jsjkx.210600040
• Computer Network • Previous Articles Next Articles
LI Meng-fei1, MAO Ying-chi1,2, TU Zi-jian1, WANG Xuan1, XU Shu-fang1,2
CLC Number:
[1]AL-JANABI S,AL-SHOURBAJI I,SHOJAFAR M,et al.Mobile Cloud Computing:Challenges and Future Research Directions[C]//International Conference on the Developments on Systems Engineering.IEEE,2017:62-67. [2]RANADHEERA S,MAGHSUDI S,HOSSAIN E.Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning[J].arXiv:1711.09012,2017. [3]XU C B,LIU Y,LIU Y X,et al.MEC server selection scheme based on multiple indicators [J].Journal of Chongqing Univer-sity of Posts and Telecommunications(Natural Science Edition),2020,32(3):329-335. [4]LIANG Y C,CAO B.Artificial neural network methods for task offloading in VANET cloud [J].Journal of Chongqing Univer-sity of Posts and Telecommunications(Natural Science Edition),2020,32(3):336-344. [5]LI J,ZHANG Y P,PANG L,et al.Joint Resource Allocation and Task Scheduling in Mobile Edge Computing[J].Journal of Chongqing University of Technology(Natural Science),2020,34(11):156-163. [6]CHEN L.Multicast resource allocation algorithm based on la-yered coding in sparse code multiple access systems[J].Journal of Chongqing University of Posts and Telecommunications(Na-tural Science Edition),2020,32(6):917-924. [7]MAO Y Y,ZHANG J,BEN K,et al.Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices[J].IEEE Journal on Selected Areas in Communications,2016,34(12):3590-3605. [8]CEHN X,JIAO L,LI W,et al.Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing[J].IEEE/ACM Transactions on Networking,2016,24(5):2795-2808. [9]CAO H,CAI J.Distributed Multiuser Computation Offloading for Cloudlet-Based Mobile Cloud Computing:A Game-Theoretic Machine Learning Approach[J].IEEE Transactions on Vehicular Technology,2018:752-764. [10]HUANG L,BI S,ZHANG Y J A.Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks[J].IEEE Transactions on Mobile Computing,2019,19(11):2581-2593. [11]GUO H,LIU J,ZHANG J.Computation Offloading for Multi-Access Mobile Edge Computing in Ultra-Dense Networks[J].IEEE Communications Magazine,2018,56(8):14-19. [12]ZHU A,GUO S,MA M,et al.Computation Offloading forWorkflow in Mobile Edge Computing Based on Deep Q-Learning[C]//Wireless and Optical Communications Conference.IEEE,2019:1-5. [13]CHEN X,ZHANG H,WU C,et al.Optimized Computation Offloading Performance in Virtual Edge Computing Systems via Deep Reinforcement Learning[J].IEEE Internet of Things Journal,2019,6(3):4005-4018. [14]HUANG B,LI Y,LI Z,et al.Security and Cost-Aware Computation Offloading via Deep Reinforcement Learning in Mobile Edge Computing[J].Wireless Communications and Mobile Computing,2019,2019:1-20. [15]SHARMA Y,JAVADI B,SI W,et al.Reliability and Energy Efficiency in Cloud Computing Systems:Survey and Taxonomy[J].Journal of Network and Computer Applications,2016,74:66-85. [16]ALSENANI Y,CROSBY G,VELASCO T.SaRa:A Stochastic Model to Estimate Reliability of Edge Resources in Volunteer Cloud[C]//2018 IEEE International Conference on Edge Computing(EDGE).IEEE,2018:121-124. [17]LORENZO B,GARCIA-ROIS J,LI X,et al.A Robust Dynamic Edge Network Architecture for the Internet-of-Things[J].IEEE Network,2018,32(1):8-15. [18]AL-HABOB A A,IBRAHIM A,DOBRE O A,et al.Collision-Free Sequential Task Offloading for Mobile Edge Computing[J].IEEE Communications Letters,2020,24(1):71-75. [19]LIU J,ZHANG Q.Offloading Schemes in Mobile Edge Computing for Ultra-Reliable Low Latency Communications[J].IEEE Access,2018,16:12825-12837. [20]HUANG L,FENG X,QIAN L,et al.Deep ReinforcementLearning-Based Task Offloading and Resource Allocation for Mobile Edge Computing[C]//International Conference on Machine Learning and Intelligent Communications.2018:33-42. [21]LI J,GAO H,LV T J,et al.Deep Reinforcement Learning based Computation Offloading and Resource Allocation for MEC[C]//Wireless Communications and Networking Conference.IEEE,2018:1-6. [22]SHU C,ZHAO Z,HAN Y,et al.Dependency-Aware and Latency-Optimal Computation Offloading for Multi-User Edge Computing Networks[C]//2019 16th Annual IEEE International Conference on Sensing,Communication,and Networking.IEEE,2019:1-9. [23]LIU J,ZHANG Q.Code-Partitioning Offloading Schemes inMobile Edge Computing for Augmented Reality[J].IEEE Access,2019,7:11222-11236. [24]CHEN Z,WANG X.Decentralized Computation Offloading for Multi-User Mobile Edge Computing:A Deep Reinforcement Learning Approach[J].Journal on Wireless Communications and Networking,2020,188:1-21. |
[1] | YU Bin, LI Xue-hua, PAN Chun-yu, LI Na. Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning [J]. Computer Science, 2022, 49(7): 248-253. |
[2] | TANG Feng, FENG Xiang, YU Hui-qun. Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation [J]. Computer Science, 2022, 49(7): 254-262. |
[3] | FANG Tao, YANG Yang, CHEN Jia-xin. Optimization of Offloading Decisions in D2D-assisted MEC Networks [J]. Computer Science, 2022, 49(6A): 601-605. |
[4] | LIU Zhang-hui, ZHENG Hong-qiang, ZHANG Jian-shan, CHEN Zhe-yi. Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems [J]. Computer Science, 2022, 49(6A): 619-627. |
[5] | XIE Wan-cheng, LI Bin, DAI Yue-yue. PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing [J]. Computer Science, 2022, 49(6): 3-11. |
[6] | ZHOU Tian-qing, YUE Ya-li. Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks [J]. Computer Science, 2022, 49(6): 12-18. |
[7] | QIU Xu, BIAN Hao-bu, WU Ming-xiao, ZHU Xiao-rong. Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication [J]. Computer Science, 2022, 49(6): 25-31. |
[8] | XU Hao, CAO Gui-jun, YAN Lu, LI Ke, WANG Zhen-hong. Wireless Resource Allocation Algorithm with High Reliability and Low Delay for Railway Container [J]. Computer Science, 2022, 49(6): 39-43. |
[9] | HONG Zhi-li, LAI Jun, CAO Lei, CHEN Xi-liang, XU Zhi-xiong. Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration [J]. Computer Science, 2022, 49(6): 149-157. |
[10] | SHEN Jia-fang, QIAN Li-ping, YANG Chao. Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks [J]. Computer Science, 2022, 49(5): 279-286. |
[11] | LI Peng, YI Xiu-wen, QI De-kang, DUAN Zhe-wen, LI Tian-rui. Heating Strategy Optimization Method Based on Deep Learning [J]. Computer Science, 2022, 49(4): 263-268. |
[12] | OUYANG Zhuo, ZHOU Si-yuan, LYU Yong, TAN Guo-ping, ZHANG Yue, XIANG Liang-liang. DRL-based Vehicle Control Strategy for Signal-free Intersections [J]. Computer Science, 2022, 49(3): 46-51. |
[13] | ZHANG Hai-bo, ZHANG Yi-feng, LIU Kai-jian. Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC [J]. Computer Science, 2022, 49(2): 304-311. |
[14] | PAN Yan-na, FENG Xiang, YU Hui-qun. Competitive-Cooperative Coevolution for Large Scale Optimization with Computation Resource Allocation Pool [J]. Computer Science, 2022, 49(2): 182-190. |
[15] | DAI Shan-shan, LIU Quan. Action Constrained Deep Reinforcement Learning Based Safe Automatic Driving Method [J]. Computer Science, 2021, 48(9): 235-243. |
|