Computer Science ›› 2022, Vol. 49 ›› Issue (9): 297-305.doi: 10.11896/jsjkx.210800108
• Information Security • Previous Articles Next Articles
TANG Ling-tao1, WANG Di1, ZHANG Lu-fei1, LIU Sheng-yun2
CLC Number:
[1]MCMAHAN B,MOORE E,RAMAGE D,et al.Communication-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [2]ZHU L,LIU Z,HAN S.Deep leakage from gradients[C]//Advances in Neural Information Processing Systems.2019:14747-14756. [3]ZHAO B,MOPURI K R,BILEN H.idlg:Improved deep leakage from gradients[J].arXiv:2001.02610,2020. [4]GEIPING J,BAUERMEISTER H,DRÖGEH,et al.Inverting Gradients How easy is it to break privacy in federated learning?[J].arXiv:2003.14053,2020. [5]SHOKRI R,STRONATI M,SONG C,et al.Membership infe-rence attacks against machine learning models[C]//2017 IEEE Symposium on Security and Privacy.IEEE,2017:3-18. [6]NASR M,SHOKRI R,HOUMANSADR A.Comprehensive privacy analysis of deep learning:Passive and active white-box inference attacks against centralized and federated learning[C]//2019 IEEE symposium on security and privacy(SP).IEEE,2019:739-753. [7]YAO A C.Protocols for secure computations[C]//23rd Annual Symposium on Foundations of Computer Science.IEEE,1982:160-164. [8]SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613. [9]CRAMER R,DAMGÅRD I,MAURERU.General secure multi-party computation from any linear secret-sharing scheme[C]//International Conference on the Theory and Applications of Cryptographic Techniques.Berlin:Springer,2000:316-334. [10]DAMGÅRD I,FITZI M,KILTZ E,et al.Unconditionally secure constant-rounds multi-party computation for equality,comparison,bits and exponentiation[C]//Theory of Cryptography Conference.Berlin:Springer,2006:285-304. [11]BENDLIN R,DAMGÅRD I,ORLANDI C,et al.Semi-hom-omorphic encryption and multiparty computation[C]//Annual International Conference on the Theory and Applications of Cryptographic Techniques.Berlin:Springer, 2011:169-188. [12]DAMGÅRD I,PASTRO V,SMART N,et al.Multiparty computation from somewhat homomorphic encryption[C]//Annual Cryptology Conference.Berlin:Springer,2012:643-662. [13]DWORK C,ROTH A.The algorithmic foundations of differential privacy[J].Foundations and Trends in Theoretical Compu-ter Science,2014,9(3/4):211-407. [14]DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[C]//Theory of Cryptography Conference.Berlin:Springer,2006:265-284. [15]MCSHERRY F,TALWAR K.Mechanism design via differential privacy[C]//48th Annual IEEE Symposium on Foundations of Computer Science.IEEE,2007:94-103. [16]BONAWITZ K,IVANOV V,KREUTER B,et al.Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.2017:1175-1191. [17]GEYER R C,KLEIN T,NABI M.Differentially private federated learning:A client level perspective[J].arXiv:1712.07557,2017. [18]AGARWAL N,SURESH A T,YU F,et al.cpSGD:Communication-efficient and differentially-private distributed SGD[J].arXiv:1805.10559,2018. [19]TRUEX S,BARACALDO N,ANWAR A,et al.A hybrid ap-proach to privacy-preserving federated learning[C]//Procee-dings of the 12th ACM Workshop on Artificial Intelligence and Security.2019:1-11. [20]XU R,BARACALDO N,ZHOU Y,et al.Hybridalpha:An efficient approach for privacy-preserving federated learning[C]//Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security.2019:13-23. [21]ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:308-318. [22]CATRINA O,SAXENA A.Secure computation with fixed-point numbers[C]//International Conference on Financial Cryptography and Data Security.Berlin:Springer,2010:35-50. [23]KRIPS T,WILLEMSON J.Hybrid model of fixed and floating point numbers in secure multiparty computations[C]//International Conference on Information Security.Cham:Springer,2014:179-197. [24]SO J,GÜLER B,AVESTIMEHR A S.Byzantine-resilient se-cure federated learning[J].arXiv:2007.11115,2020. [25]ZHAO Y,LI M,LAI L,et al.Federated learning with non-iid data[J].arXiv:1806.00582,2018. [26]LI T,SAHU A K,ZAHEER M,et al.Federated optimization in heterogeneous networks[J].arXiv:1812.06127,2018. |
[1] | LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao. Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients [J]. Computer Science, 2022, 49(9): 183-193. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[9] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[10] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[11] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[12] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[13] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[14] | HUANG Jue, ZHOU Chun-lai. Frequency Feature Extraction Based on Localized Differential Privacy [J]. Computer Science, 2022, 49(7): 350-356. |
[15] | LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao. Clustered Federated Learning Methods Based on DBSCAN Clustering [J]. Computer Science, 2022, 49(6A): 232-237. |
|