Computer Science ›› 2022, Vol. 49 ›› Issue (6A): 496-501.doi: 10.11896/jsjkx.210400298
• Information Security • Previous Articles Next Articles
YAN Meng1, LIN Ying1,2, NIE Zhi-shen1, CAO Yi-fan1, PI Huan1, ZHANG Lan1
CLC Number:
[1] MCMAHAN H B,MOORE E,RAMAGE D,et al.Federated Learning of Deep Networks using Model Averaging[EB/OL].https://arxiv.org/abs/1602.05629. [2] WENG T W,ZHANG H,CHEN P Y,et al.Evaluating the robustness of neural networks:an extreme value theory approach [EB/OL].[2019-12-19].https://arxiv.org/abs/1801.10578. [3] MOUSTAPHA C,PIOTR B,EDOUARDG,et al.Robustness to adversarial examples can be improved with overfitting[J].Parseval Networks,2020,4(11):935-944. [4] GOODFELLOWI J,SHLENS J,SZEGEDY C.Explaining andharnessing adversarial examples[C]//International Conference on Machine Learning.2015:1-11. [5] HENDRYCKS D,GIMPEL K.Visible progress on adversarial images and a new saliency map[J].arXiv:1608.00530,2016. [6] MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[J].arXiv:1706.06083,2017. [7] MIYATO T,DAI A M,GOODFELLOW I.Adversarial Training Methods for Semi-Supervised Text Classification[J].arXiv:1605.07725,2016. [8] CAI Q Z,LIU C,SONG D.Curriculum Adversarial Training[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence(IJCAI).2018:3740-3747. [9] TRAME R F,KURAKIN A,PAPERNOTN,et al.Ensembleadversarial training:attacks and defenses[J].arXiv:1705.07204,2017. [10] FENG S W,YU H.Multi-participant multi-class vertical federated learning[J].arXiv:2001.11154,2020. [11] KONEČNÝ J,MCMAHANH B,YU F X,et al.Federated lear-ning:strategies for improving communication efficiency[J].ar-Xiv:1610.05492,2016. [12] KONEČNÝ J.Stochastic,distributed and federated optimization for machine learning[J].arXiv:1707.01155,2017. [13] FANG C,GUO Y,HU Y,et al.Privacy-preserving and communication-efficient federated learning in internet of things[J].Computers & Security,2021,103:102199. [14] LIU X,LI H,XU G,et al.Adaptive privacy-preserving federated learning[J].Peer-to-Peer Networking and Applications,2020,13(6):2356-2366. [15] KONEN J,MCMAHAN H B,RAMAGE D,et al.FederatedOptimization:Distributed Machine Learning for On-Device Intelligence[J].arXiv:1610.02527,2016. [16] CARLINI N,WAGNER D.Towards evaluating therobustnessofneural networks[C]//IEEE Symposium on Security and Privacy(SP).2017:39-57. [17] GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [18] MOOSAVI-DEZFOOLI S M,FAWZI A,FROSSARD P.Deepfool:a simple and accurate method to fool deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2574-2582. [19] CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//Proceedings of the IEEE Symposium on Security and Privacy.2017:39-57. [20] SU J,VARGAS D V,SAKURAI K.One pixel attack for fooling deep neural networks[J].Proceedings of IEEE Transactions on Evolutionary Computation,2019,23(5):828-841. [21] MOOSAVI-DEZFOOLISM,FAWZI A,FAWZI O,et al.Universal adversarial perturbations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1765-1773. [22] SHARIF M,BHAGAVATULA S,BAUER L,et al.Accessorize to a crime:Real and stealthy attackson state-of-the-art facerecog-nition[C]//Proceedings of the 2016 ACM Sigsac Conference on Computer and Communications Security.2016:1528-1540. [23] KURAKIN A,GOODFELLOW I,BENGIO S.Adversarial machine learning at scale[J].arXiv:1611.01236,2016. [24] DONG Y,LIAO F,PANG T,et al.Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:9185-9193. |
[1] | LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao. Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients [J]. Computer Science, 2022, 49(9): 183-193. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[4] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[5] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[6] | WU Zi-bin, YAN Qiao. Projected Gradient Descent Algorithm with Momentum [J]. Computer Science, 2022, 49(6A): 178-183. |
[7] | XU Guo-ning, CHEN Yi-peng, CHEN Yi-ming, CHEN Jin-yin, WEN Hao. Data Debiasing Method Based on Constrained Optimized Generative Adversarial Networks [J]. Computer Science, 2022, 49(6A): 184-190. |
[8] | LU Chen-yang, DENG Su, MA Wu-bin, WU Ya-hui, ZHOU Hao-hao. Clustered Federated Learning Methods Based on DBSCAN Clustering [J]. Computer Science, 2022, 49(6A): 232-237. |
[9] | DU Hui, LI Zhuo, CHEN Xin. Incentive Mechanism for Hierarchical Federated Learning Based on Online Double Auction [J]. Computer Science, 2022, 49(3): 23-30. |
[10] | WANG Xin, ZHOU Ze-bao, YU Yun, CHEN Yu-xu, REN Hao-wen, JIANG Yi-bo, SUN Ling-yun. Reliable Incentive Mechanism for Federated Learning of Electric Metering Data [J]. Computer Science, 2022, 49(3): 31-38. |
[11] | ZHAO Luo-cheng, QU Zhi-hao, XIE Zai-peng. Study on Communication Optimization of Federated Learning in Multi-layer Wireless Edge Environment [J]. Computer Science, 2022, 49(3): 39-45. |
[12] | LI Jian, GUO Yan-ming, YU Tian-yuan, WU Yu-lun, WANG Xiang-han, LAO Song-yang. Multi-target Category Adversarial Example Generating Algorithm Based on GAN [J]. Computer Science, 2022, 49(2): 83-91. |
[13] | CHEN Meng-xuan, ZHANG Zhen-yong, JI Shou-ling, WEI Gui-yi, SHAO Jun. Survey of Research Progress on Adversarial Examples in Images [J]. Computer Science, 2022, 49(2): 92-106. |
[14] | ZHANG Cheng-rui, CHEN Jun-jie, GUO Hao. Comparative Analysis of Robustness of Resting Human Brain Functional Hypernetwork Model [J]. Computer Science, 2022, 49(2): 241-247. |
[15] | JING Hui-yun, ZHOU Chuan, HE Xin. Security Evaluation Method for Risk of Adversarial Attack on Face Detection [J]. Computer Science, 2021, 48(7): 17-24. |
|