Computer Science ›› 2022, Vol. 49 ›› Issue (9): 132-138.doi: 10.11896/jsjkx.220600022
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZHOU Xu1, QIAN Sheng-sheng2, LI Zhang-ming2, FANG Quan2, XU Chang-sheng2
CLC Number:
[1]GOOLSBY R.Social media as crisis platform:The future ofcommunity maps/crisis maps[J].ACM Transactions on Intelligent Systems and Technology(TIST),2010,1(1):1-11. [2]KUMAR S,BARBIER G,ABBASI M,et al.Tweettracker:An analysis tool for humanitarian and disaster relief[C]//Procee-dings of the International AAAI Conference on Web and Social Media.2011:661-662. [3]IRINA S,LEYSIA P,JEANNETTE S.et al.Finding community through information and communication technology in disaster response[C]//Proceedings of the ACM conference on Computer Supported Cooperative Work.2008:127-136. [4]ABAVISANI M,WU L W,HU S L,et al.Multimodal categorization of crisis events in social media[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14679-14689. [5]DOUWE K,SUVRAT B,HAMED F,et al.Supervised multi-modal bitransformers for classifying images and text[J].arXiv:1909.02950,2019. [6]FERDA O,FIROJ A,MUHAMMAD I.Analysis of social media data using multimodal deep learning for disaster response[J].arXiv:2004.11838,2020. [7]XUKUN L DOINA C.Improving Disaster-related Tweet Classification with a Multimodal Approach[C]//Social Media for Disaster Response and Resilience Proceedings of the 17th ISCRAM Conference.2020:893-902. [8]MAO Y D,JIANG Q P,CONG R M,et al.Cross-Modality Fusion and Progressive Integration Network for Saliency Prediction on Stereoscopic 3D Images[J].IEEE Transactions on Multimedia,2022,24:2435-2448. [9]FIROJ A,FERDA O,MUHAMMAD I.Crisismmd:Multimodal twitter datasets from natural disasters[J].arXiv:1805.00713,2018. [10]ELENA K,MARIA L,ARKAITZ Z.All-in-one:Multi-task lear-ning for rumour verification[J].arXiv:1806.03713,2018. [11]BHARATH S,DAVE F,ENGIN D,et al.Short text classifica-tion in twitter to improve information filtering[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2010:841-842. [12]TOMAS M,ILYA S,KAI C,et al.Distributed representations of words and phrases and their compositionality[J].arXiv:1310.4546,2013. [13]BEVERLY E P,PROCESO L F,JAIME T B.Automatic classi-fication of disaster-related tweets[C]//Proceedings of International Conference on Innovative Engineering Technologies(ICIET).2014:62. [14]LEE K,PALSETIA D,NAYAYANAN R,et al.Twitter trending topic classification[C]//IEEE 11th International Confe-rence on Data Mining Workshops.IEEE,2011:251-258. [15]KELLY S,ZHANG X B ,AHMAD K.Mining multimodal information on social media for increased situational awareness[C]//Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management.2017:613-622. [16]MOZANNAR H,RIZK Y,AWAD M.Damage Identification in Social Media Posts using Multimodal Deep Learning[C]//The 15th International Conference on Information Systems for Crisis Response and Management(ISCRAM).2018. [17]WU Y,ZHAN P,ZHANG Y,et al.Multimodal Fusion withCo-Attention Networks for Fake News Detection[C]//Fin-dings of the Association for Computational Linguistics.2021:2560-2569. [18]QI P,CAO J,LI X,et al.Improving Fake News Detection by Using an Entity-enhanced Framework to Fuse Diverse Multimodal Clues[C]//Proceedings of the 29th ACM International Confe-rence on Multimedia.2021:1212-1220. [19]IAN G,JEAN P A,MEHDI M,et al.Generative adversarialnets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2(NIPS'14).2014:2672-2680. [20]PAN Y S, LIU M X,LIAN C F,et al.Spatially-constrained Fisher representation for brain disease identification with incomplete multi-modal neuroimages[J].IEEE Transactions on Medical Imaging 2020,39(9):2965-2975. [21]APOORVA S,JITENDER S V,DEEPTI R B,et al.MRI toPET Cross-Modality Translation using Globally and Locally AwareGAN(GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease[J].arXiv:2108.02160,2021. [22]WANG Y.Survey on deep multi-modal data analytics:collaboration,rivalry,and fusion[J].ACM Transactions on Multi-media Computing,Communications,and Applications(TOMM),2021,17(1s):1-25. [23]GU Y C,ZHANG L,LIU Y,et al.Generalized zero-shot lear-ning via VAE-conditioned generative flow[J].arXiv:2009.00303,2020. [24]GUO J,ZHU W.Collective affinity learning for partial cross-modal hashing[J].IEEE Transactions on Image Processing,2019,29:1344-1355. [25]TSAI Y,HUANG L K,SALAKHUTDINOV R.Learning ro-bust visual-semantic embeddings[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3571-3580. [26]MUKHERJEE T,YAMADA M,M HOSPEDALES T.Deepmatching autoencoders[J].arXiv:1711.06047,2017. [27]SUZUKI M,NAKAYAMA K,MATSUO Y.Improving bi-directional generation between different modalities with varia-tional autoencoders[J].arXiv:1801.08702,2018. [28]ANDRÉS M,RAFAEL S R,LLUÍS G,et al.StacMR:Scene-Text Aware Cross-Modal Retrieval[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:2220-2230. [29]ZHU Y,WU Y,HUGO L,et al.2021.Learning audio-visual correlations from variational cross-modal generation[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2021).IEEE,2021:4300-4304. [30]DIEDERIK P K,MAX W.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [31]AKIRA F,DONG H P,DAYLEN Y,et al.Multimodal compact bilinear pooling for visual question answering and visual groun-ding[J].arXiv:1606.01847,2016. [32]NIHAR B,KEVIN D,PEYMAN N.Generalized zero-shotlearning using multimodal variational auto-encoder with semantic concepts[C]//2021 IEEE International Conference on Image Processing(ICIP).IEEE,2021:1284-1288. [33]FERDA O,FIROJ A,MUHAMMAD I.Analysis of socialmedia data using multimodal deep learning for disaster response[J].arXiv:2004.11838,2020. [34]GAO H,ZHUANG L,LAURENS V D M,et al.Densely connected convolutional networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [35]JACOB D,CHANG M W,LEE K,et al.BERT:Pre-training ofDeep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,NAACL-HLT.2019:4171-4186. [36]MASASHI S,MATTHIAS K,KLAUS-ROBERT M.Cova-riate shift adaptation by importance weighted cross validation[J].Journal of Machine Learning Research,2007,8(5):985-1005. [37]DIEDERIK P K,JIMMY B.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
[1] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[2] | YAO Xiao-ming, DING Shi-chang, ZHAO Tao, HUANG Hong, LUO Jar-der, FU Xiao-ming. Big Data-driven Based Socioeconomic Status Analysis:A Survey [J]. Computer Science, 2022, 49(4): 80-87. |
[3] | LIU Chuang, XIONG De-yi. Survey of Multilingual Question Answering [J]. Computer Science, 2022, 49(1): 65-72. |
[4] | ZHOU Xin-min, HU Yi-gui, LIU Wen-jie, SUN Rong-jun. Research on Urban Function Recognition Based on Multi-modal and Multi-level Data Fusion Method [J]. Computer Science, 2021, 48(9): 50-58. |
[5] | DAI Hong-liang, ZHONG Guo-jin, YOU Zhi-ming , DAI Hong-ming. Public Opinion Sentiment Big Data Analysis Ensemble Method Based on Spark [J]. Computer Science, 2021, 48(9): 118-124. |
[6] | WU A-ming, JIANG Pin, HAN Ya-hong. Survey of Cross-media Question Answering and Reasoning Based on Vision and Language [J]. Computer Science, 2021, 48(3): 71-78. |
[7] | WANG Shu-hui, YAN Xu, HUANG Qing-ming. Overview of Research on Cross-media Analysis and Reasoning Technology [J]. Computer Science, 2021, 48(3): 79-86. |
[8] | WANG Li-fang, WANG Rui-fang, LIN Su-zhen, QIN Pin-le, GAO Yuan, ZHANG Jin. Multimodal Medical Image Fusion Based on Dual Residual Hyper Densely Networks [J]. Computer Science, 2021, 48(2): 160-166. |
[9] | CHEN Jie-ting, WANG Wei-ying, JIN Qin. Multi-label Video Classification Assisted by Danmaku [J]. Computer Science, 2021, 48(1): 167-174. |
[10] | ZHANG Zhi-yang, ZHANG Feng-li, TAN Qi, WANG Rui-jin. Review of Information Cascade Prediction Methods Based on Deep Learning [J]. Computer Science, 2020, 47(7): 141-153. |
[11] | ZHANG Zhi-yang, ZHANG Feng-li, CHEN Xue-qin, WANG Rui-jin. Information Cascade Prediction Model Based on Hierarchical Attention [J]. Computer Science, 2020, 47(6): 201-209. |
[12] | DENG Yi-jiao, ZHANG Feng-li, CHEN Xue-qin, AI Qing, YU Su-zhe. Collaborative Attention Network Model for Cross-modal Retrieval [J]. Computer Science, 2020, 47(4): 54-59. |
[13] | SONG Chang,YU Ke,WU Xiao-fei. Fake Account Detection Method in Online Social Network Based on Improved Edge Weighted Paired Markov Random Field Model [J]. Computer Science, 2020, 47(2): 251-255. |
[14] | YAO Lin-li, CHEN Shi-zhe, JIN Qin. Fine-grained Facial Makeup Image Ordering via Language [J]. Computer Science, 2020, 47(12): 161-168. |
[15] | LIN Min-hong, MENG Zu-qiang. Multimodal Sentiment Analysis Based on Attention Neural Network [J]. Computer Science, 2020, 47(11A): 508-514. |
|