Computer Science ›› 2020, Vol. 47 ›› Issue (6): 201-209.doi: 10.11896/jsjkx.200200117
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Zhi-yang, ZHANG Feng-li, CHEN Xue-qin, WANG Rui-jin
CLC Number:
[1]ZHU X,JIA Y,NIE Y P,et al.Event Propagation Analysis on Microblog[J].Journal of Computer Research and Development,2015,52(2):437-444. [2]CHENG J,ADAMIC L,DOW P A,et al.Can cascades be predicted?[C]//Proceedings of the 23rd International Conference on World Wide Web.ACM,2014:925-936. [3]JIANG Y,COUNTS S.Predicting the speed,scale,and range of information diffusion in twitter[C]//Fourth International AAAI Conference on Weblogs and Social Media.2010. [4]GOLUB B,JACKSON M O.Using selection bias to explain the observed structure of internet diffusions[J].Proceedings of the National Academy of Sciences,2010,107(24):10833-10836. [5]LESKOVEC J.The Dynamics of Viral Marketing[J].Acm Transactions on the Web,2005,1(1):228-237. [6]DOW A P,ADAMIC L A,FRIGGERI A.The Anatomy of Large Facebook Cascades[C]//ICWSM.2013. [7]KUMAR R,MAHDIAN M,MCGLOHON M.Dynamics of conversations[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2010:553-562. [8]CHENG L,MA J Q,GUO X X,et al.Deepcas:An end-to-end predictor of information cascades[C]//Proceedings of the 26th international conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:577-586. [9]WANG X S,MA S Z.Method of Weibo User Influence Calculation Integrating Users’ Own Factors and Interaction Behavior[J].Computer Science,2020,47(1):96-101. [10]BENGIO Y,DUCHARME R,VINCENT P,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3(Feb):1137-1155. [11]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.2012:1097-1105. [12]QIU J Z,TANG J,MA H,et al.Deepinf:Social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2018:2110-2119. [13]VELIKOVI P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [14]GUO R C,SHAKARIAN P.A comparison of methods for cascade prediction[C]//Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.IEEE,2016:591-598. [15]BAO P,SHEN H W,JIN X L,et al.Modeling and predicting popularity dynamics of microblogs using self-excited hawkes processes[C]//Proceedings of the 24th International Conference on World Wide Web.ACM,2015:9-10. [16]KEMPE D,KLEINBERG J,TARDOS É.Maximizing the spread of influence through a social network[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2003:137-146. [17]CAO Q,SHEN H W,CEN K T,et al.Deephawkes:Bridging the gap between prediction and understanding of information cascades[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.ACM,2017:1149-1158. [18]CHEN X Q,ZHOU F,ZHANG K P,et al.Information Diffusion Prediction via Recurrent Cascades Convolution[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE).IEEE,2019:770-781. [19]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [20]TONG H H,FALOUTSOS C,PAN J Y.Fast random walk with restart and its applications[C]//Sixth International Conference on Data Mining (ICDM’06).IEEE,2006:613-622. [21]MNIH V,HEESS N,GRAVES A.Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems.2014:2204-2212. [22]WANG Z T,CHEN C Y,LI W J.A Sequential Neural Information Diffusion Model with Structure Attention[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.ACM,2018:1795-1798. [23]ISLAM M R,MUTHIAH S,ADHIKARI B,et al.DeepDiffuse:Predicting the ‘Who’ and ‘When’ in Cascades[C]//2018 IEEE International Conference on Data Mining (ICDM).IEEE,2018:1055-1060. [24]GAO S,MA J,CHEN Z M.Modeling and predicting retweeting dynamics on microblogging platforms[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining.ACM,2015:107-116. [25]LESKOVEC J,BACKSTROM L,KLEINBERG J.Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2009:497-506. [26]TAD H,KRISTINA L.Social Dynamics of Digg[C]//Proceedings of the Fourth International Conference on Weblogs and Social Media(ICWSM 2010).Washington,DC,USA,2010:23-26. [27]WANG J,ZHENG V,LIU Z M,et al.Topological recurrentneural network for diffusion prediction[C]//2017 IEEE International Conference on Data Mining (ICDM).IEEE,2017:475-484. |
[1] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[2] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[3] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[4] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[5] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[6] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[7] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[8] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[9] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[10] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[11] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[12] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[13] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[14] | PENG Shuang, WU Jiang-jiang, CHEN Hao, DU Chun, LI Jun. Satellite Onboard Observation Task Planning Based on Attention Neural Network [J]. Computer Science, 2022, 49(7): 242-247. |
[15] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
|