Computer Science ›› 2020, Vol. 47 ›› Issue (7): 141-153.doi: 10.11896/jsjkx.200300130
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Zhi-yang, ZHANG Feng-li, TAN Qi, WANG Rui-jin
CLC Number:
[1] | YANG J,COUNTS S.Predicting the speed,scale,and range of information diffusion in twitter[C]//Fourth International AAAI Conference on Weblogs and Social Media.2010. |
[2] | GRUHL D,GUHA R,LIBEN-NOWELL D,et al.Information diffusion through blogspace[C]//Proceedings of the 13th international conference on World Wide Web.ACM,2004:491-501. |
[3] | LESKOVEC J,MCGLOHON M,FALOUTSOS C,et al.Patterns of cascading behavior in large blog graphs[C]//Procee-dings of the 2007 SIAM international conference on data mining.Society for Industrial and Applied Mathematics,2007:551-556. |
[4] | GOLUB B,JACKSON M O.Using selection bias to explain the observed structure of internet diffusions[J].Proceedings of the National Academy of Sciences,2010,107(24):10833-10836. |
[5] | LIBEN-NOWELL D,KLEINBERG J.Tracing information flow on a global scale using Internet chain-letter data[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(12):4633-4638. |
[6] | LESKOVEC J,ADAMIC L A,HUBERMAN B A.The dyna-mics of viral marketing[J].ACM Transactions on the Web (TWEB),2007,1(1):5. |
[7] | DOW P A,ADAMIC L A,FRIGGERI A.The anatomy of large facebook cascades[C]//Seventh international AAAI conference on weblogs and social media.2013. |
[8] | KUMAR R,MAHDIAN M,MCGLOHON M.Dynamics of conversations[C]//Proceedings of the 16th ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining.ACM,2010:553-562. |
[9] | QIU J,TANG J,MA H,et al.Deepinf:Social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2018:2110-2119. |
[10] | GE Y,CHEN S C.Graph Convolutional Network for Recom-mender Systems[J/OL].[2020-02-20].http://www.jos.org.cn/1000-9825/5928.htm. |
[11] | KUPAVSKII A,OSTROUMOVA L,UMNOV A,et al.Prediction of retweet cascade size over time[C]//Proceedings of the 21st ACMInternational Conference on Information and Know-ledge Management.ACM,2012:2335-2338. |
[12] | MA Z,SUN A,CONG G.On predicting the popularity of newly emerging hashtags in Twitter[J].Journal of the American So-ciety for Information Science and Technology,2013,64(7):1399-1410. |
[13] | PETROVIC S,OSBORNE M,LAVRENKO V.Rt to win! predicting message propagation in twitter[C]//Fifth International AAAI Conference on Weblogs and Social Media.2011. |
[14] | SZABO G,HUBERMAN B A.Predicting the popularity of online content[J].Communications of the ACM,2010,53(8):80-88. |
[15] | GUO R,SHAKARIAN P.A comparison of methods for cascade prediction[C]//Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.IEEE Press,2016:591-598. |
[16] | CHENG J,ADAMIC L,DOW P A,et al.Can cascades be predicted?[C]//Proceedings of the 23rdInternational Conference on World Wide Web.ACM,2014:925-936. |
[17] | WENG L,MENCZER F,AHN Y Y.Virality prediction andcommunity structure in social networks[J].Scientific reports,2013,3:2522. |
[18] | TSUR O,RAPPOPORT A.What's in a hashtag?:content based prediction of the spread of ideas in microblogging communities[C]//Proceedings of the fifth ACMInternational Conference on Web Search and Data Mining.ACM,2012:643-652. |
[19] | BAKSHY E,HOFMAN J M,MASON W A,et al.Everyone’s an influencer:quantifying influence on twitter[C]//Proceedings of the4th ACM International Conference on Web Search and Data Mining.ACM,2011:65-74. |
[20] | MARTIN T,HOFMAN J M,SHARMA A,et al.Exploring limits to prediction in complex social systems[C]//Proceedings of the 25th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2016:683-694. |
[21] | BAO P,SHEN H W,JIN X,et al.Modeling and predicting po-pularity dynamics of microblogs using self-excited hawkes processes[C]//Proceedings of the 24th International Conference on World Wide Web.ACM,2015:9-10. |
[22] | ZHAO Q,ERDOGDU M A,HE H Y,et al.Seismic:A self-exciting point process model for predicting tweet popularity[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2015:1513-1522. |
[23] | CRANE R,SORNETTE D.Robust dynamic classes revealed by measuring the response function of a social system[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(41):15649-15653. |
[24] | RIZOIU M A,XIE L,SANNER S,et al.Expecting to be hip:Hawkes intensity processes for social media popularity[C]//Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:735-744. |
[25] | XIAO S,YAN J,YANG X,et al.Modeling the intensity function of point process via recurrent neural networks[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017. |
[26] | WANG Y,SHEN H,LIU S,et al.Cascade Dynamics Modeling with Attention-based Recurrent Neural Network[C]//IJCAI.2017:2985-2991. |
[27] | SHEN H,WANG D,SONG C,et al.Modeling and predictingpopularity dynamics via reinforced poisson processes[C]//Twenty-eighth AAAIConference on Artificial Intelligence.2014. |
[28] | GAO J,SHEN H,LIU S,et al.Modeling and predicting retweeting dynamics via a mixture process[C]//Proceedings of the 25th International Conference Companion on World Wide Web.International World Wide Web Conferences Steering Committee,2016:33-34. |
[29] | GAO S,MA J,CHEN Z.Modeling and predicting retweeting dynamics on microblogging platforms[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining.ACM,2015:107-116. |
[30] | GOMEZ-RODRIGUEZ M,LESKOVEC J,SCHÖLKOPF B.Modeling information propagation with survival theory[C]//International Conference on Machine Learning.2013:666-674. |
[31] | KEMPE D,KLEINBERG J,TARDOS É.Maximizing the spread of influence through a social network[C]//Proceedings of the9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2003:137-146. |
[32] | WANG Y,SHEN H W,LIU S,et al.Learning user-specific latent influence and susceptibility from information cascades[J].arXiv preprint arXiv:1310.3911,2013. |
[33] | LI C,MA J,GUO X,et al.Deepcas:An end-to-end predictor of information cascades[C]//Proceedings of the 26thInternational Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:577-586. |
[34] | LIN J,ZHANG L,HE M,et al.Multi-path relationship pre-served social network embedding[J].IEEE Access,2019,7:26507-26518. |
[35] | CAO Q,SHEN H,CEN K,et al.Deephawkes:Bridging the gap between prediction and understanding of information cascades[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.ACM,2017:1149-1158. |
[36] | WANG S J,ZHOU L H,KONG B,et al.LDA-DeepHawkesmodel for predicting information cascade[J/OL].Journal of Frontiers of Computer Science and Technology:1-21.[2019-10-14].http://kns.cnki.net/kcms/detail/11.5602.TP.20190628.1726.006.html. |
[37] | ISLAM M R,MUTHIAH S,ADHIKARI B,et al.DeepDiffuse:Predicting the'Who'and'When'in Cascades[C]//2018 IEEE International Conference on Data Mining (ICDM).IEEE,2018:1055-1060. |
[38] | PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining.ACM,2014:701-710. |
[39] | RAMAGE D,DUMAIS S,LIEBLING D.Characterizing microblogs with topic models[C]//4th International AAAI Conference on Weblogs and Social Media.2010. |
[40] | ZHANG C Y,SUN J L,DING Y Q.Topic mining for microblog based on MB-LDA model[J].Journal of Computer Research and Development,2011,48(10):1795-1802. |
[41] | KANG J H,LERMAN K,GETOOR L.LA-LDA:a limited attention topic model for social recommendation[C]//Internatio-nal Conference on Social Computing,Behavioral-Cultural Mode-ling,and Prediction.Heidelberg:Springer 2013:211-220. |
[42] | LIU Y,WANG J,JIANG Y.PT-LDA:A latent variable model to predict personality traits of social network users[J].Neurocomputing,2016,210:155-163. |
[43] | NI L P,LIU X J,MA C Y.Topic Evolution Analysis Based on LDA Model and AP Clustering[J].Computer Technology and Development,2016,26(12):6-11. |
[44] | CHEN G,KONG Q,XU N,et al.NPP:A neural popularity prediction model for social media content[J].Neurocomputing,2019,333:221-230. |
[45] | WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].arXiv:1901.00596,2019. |
[46] | BENGIO Y,DUCHARME R,VINCENT P,et al.A neuralprobabilistic language model[J].Journal of machine learning research,2003,3(Feb):1137-1155. |
[47] | KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[C]//Advances inNeural Information Processing Systems.2012:1097-1105. |
[48] | NIEPERT M,AHMED M,KUTZKOV K.Learning convolu-tional neural networks for graphs[C]//InternationalConference on Machine Learning.2016:2014-2023. |
[49] | DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances inNeural Information Processing Systems.2016:3844-3852. |
[50] | LI C,GUO X,MEI Q.Deepgraph:Graph structure predicts network growth[J].arXiv preprint arXiv:1610.06251,2016. |
[51] | WANG Z,CHEN C,LI W.A Sequential Neural InformationDiffusion Model with Structure Attention[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.ACM,2018:1795-1798. |
[52] | WANG J,ZHENG V W,LIU Z,et al.Topological recurrentneural network for diffusion prediction[C]//2017 IEEE International Conference on Data Mining (ICDM).IEEE,2017:475-484. |
[53] | CHEN X,ZHOU F,ZHANG K,et al.Information DiffusionPrediction via Recurrent Cascades Convolution[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE).IEEE,2019:770-781. |
[54] | CHEN X,ZHANG K,ZHOU F,et al.Information CascadesModeling via Deep Multi-Task Learning[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2019:885-888. |
[55] | YANG C,TANG J,SUN M,et al.Multi-scale information diffusion prediction with reinforced recurrent networks[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.AAAI Press,2019:4033-4039. |
[56] | SHUAI B,ZUO Z,WANG B,et al.Dag-recurrent neural net-works for scene labeling[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:3620-3629. |
[57] | BALDI P,POLLASTRI G.The principled design of large-scale recursive neural network architectures--dag-rnns and the protein structure prediction problem[J].Journal of Machine Learning Research,2003,4(Sep):575-602. |
[58] | BIANCHINI M,MAGGINI M,SARTI L,et al.Recursive neural networks for processing graphs with labelled edges:Theory and applications[J].Neural Networks,2005,18(8):1040-1050. |
[59] | LEI T,ZHANG Y,ARTZI Y.Training rnns as fast as cnns[J].arXiv:1709.02755,2017. |
[60] | HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems.2017:1024-1034. |
[61] | KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. |
[62] | VELIKOVI P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv preprint arXiv:1710.10903,2017. |
[63] | LI Y,ZHANG Z L.Digraph laplacian and the degree of asymmetry[J].Internet Mathematics,2012,8(4):381-401. |
[64] | VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. |
[65] | SUTTON R S,MCALLESTER D A,SINGH S P,et al.Policy gradient methods for reinforcement learning with function approximation[C]//Advances in Neural Information Processing Systems.2000:1057-1063. |
[66] | HODAS N O,LERMAN K.The simple rules of social contagion[J].Scientific Reports,2014,4:4343. |
[67] | GEHRKE J,GINSPARG P,KLEINBERG J.Overview of the2003 KDD Cup[J].Acm SIGKDD Explorations Newsletter,2003,5(2):149-151. |
[68] | LESKOVEC J,BACKSTROM L,KLEINBERG J.Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2009:497-506. |
[69] | HOGG T,LERMAN K.Social dynamics of digg[J].EPJ Data Science,2012,1(1):5. |
[70] | TANG L,LIU H.Relational learning via latent social dimensions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2009:817-826. |
[71] | BUCKLEY C,VOORHEES E M.Retrieval evaluation with incomplete information[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2004:25-32. |
[72] | WANG Z,LI W.Hierarchical diffusion attention network[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.AAAI Press,2019:3828-3834. |
[73] | SUN S.Multi-view Laplacian support vector machines[C]//International Conference on Advanced Data Mining and Applications.Heidelberg:Springer,2011:209-222. |
[74] | SUN S,SHAWE-TAYLOR J,MAO L.PAC-Bayes analysis of multi-view learning[J].Information Fusion,2017,35:117-131. |
[75] | JING P,SU Y,NIE L,et al.Low-rank multi-view embedding learning for micro-video popularity prediction[J].IEEE Transactions on Knowledge and Data Engineering,2017,30(8):1519-1532. |
[76] | GONG W H,CHEN Y Q,PEI X B,et al.Community detection combined with multi-dimensional relationships in location-based social networks[J/OL].Journal of Software:1-16.[2019-10-08].http://jos.org.cn/1000-9825/5269.htm. |
[77] | BODIN E,MALIK I,EK C H,et al.Nonparametric inference for auto-encoding variational Bayes[J].arXiv:1712.06536,2017. |
[78] | MASCI J,MEIER U,CIREŞAN D,et al.Stacked convolutional auto-encoders for hierarchical feature extraction[C]//International Conference on Artificial Neural Networks.Heidelberg:Springer,2011:52-59. |
[79] | CHEN X,DUAN Y,HOUTHOOFT R,et al.Infogan:Inter-pretable representation learning by information maximizing generative adversarial nets[C]//Advances in Neural Information Processing Systems.2016:2172-2180. |
[80] | GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2016,17(1):2096-2030. |
[81] | REZAEI A,XIAO C,GAO J,et al.Protecting Sensitive Attri-butes via Generative Adversarial Networks[J].arXiv:1812.10193,2018. |
[82] | ZHOU F,GAO Q,TRAJCEVSKI G,et al.Trajectory-UserLinking via Variational AutoEncoder[C]//IJCAI.2018:3212-3218. |
[83] | DIAO W,SUN X,DOU F,et al.Object recognition in remotesensing images using sparse deep belief networks[J].Remote Sensing Letters,2015,6(10):745-754. |
[84] | CUI Z,CAO Z,YANG J,et al.Hierarchical recognition system for target recognition from sparse representations[J].Mathematical Problems in Engineering,2015. |
[1] | WANG Rui-ping, JIA Zhen, LIU Chang, CHEN Ze-wei, LI Tian-rui. Deep Interest Factorization Machine Network Based on DeepFM [J]. Computer Science, 2021, 48(1): 226-232. |
[2] | YU Wen-jia, DING Shi-fei. Conditional Generative Adversarial Network Based on Self-attention Mechanism [J]. Computer Science, 2021, 48(1): 241-246. |
[3] | TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267. |
[4] | DING Yu, WEI Hao, PAN Zhi-song, LIU Xin. Survey of Network Representation Learning [J]. Computer Science, 2020, 47(9): 52-59. |
[5] | HE Xin, XU Juan, JIN Ying-ying. Action-related Network:Towards Modeling Complete Changeable Action [J]. Computer Science, 2020, 47(9): 123-128. |
[6] | YE Ya-nan, CHI Jing, YU Zhi-ping, ZHAN Yu-liand ZHANG Cai-ming. Expression Animation Synthesis Based on Improved CycleGan Model and Region Segmentation [J]. Computer Science, 2020, 47(9): 142-149. |
[7] | DENG Liang, XU Geng-lin, LI Meng-jie, CHEN Zhang-jin. Fast Face Recognition Based on Deep Learning and Multiple Hash Similarity Weighting [J]. Computer Science, 2020, 47(9): 163-168. |
[8] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui. Overview of Deepfake Video Detection Technology [J]. Computer Science, 2020, 47(9): 283-292. |
[9] | YUAN Ye, HE Xiao-ge, ZHU Ding-kun, WANG Fu-lee, XIE Hao-ran, WANG Jun, WEI Ming-qiang, GUO Yan-wen. Survey of Visual Image Saliency Detection [J]. Computer Science, 2020, 47(7): 84-91. |
[10] | WANG Wen-dao, WANG Run-ze, WEI Xin-lei, QI Yun-liang, MA Yi-de. Automatic Recognition of ECG Based on Stacked Bidirectional LSTM [J]. Computer Science, 2020, 47(7): 118-124. |
[11] | LIU Yan, WEN Jing. Complex Scene Text Detection Based on Attention Mechanism [J]. Computer Science, 2020, 47(7): 135-140. |
[12] | JIANG Wen-bin, FU Zhi, PENG Jing, ZHU Jian. 4Bit-based Gradient Compression Method for Distributed Deep Learning System [J]. Computer Science, 2020, 47(7): 220-226. |
[13] | CHEN Jin-yin, ZHANG Dun-Jie, LIN Xiang, XU Xiao-dong and ZHU Zi-ling. False Message Propagation Suppression Based on Influence Maximization [J]. Computer Science, 2020, 47(6A): 17-23. |
[14] | CHENG Zhe, BAI Qian, ZHANG Hao, WANG Shi-pu and LIANG Yu. Improving Hi-C Data Resolution with Deep Convolutional Neural Networks [J]. Computer Science, 2020, 47(6A): 70-74. |
[15] | HE Lei, SHAO Zhan-peng, ZHANG Jian-hua and ZHOU Xiao-long. Review of Deep Learning-based Action Recognition Algorithms [J]. Computer Science, 2020, 47(6A): 139-147. |
|