Computer Science ›› 2023, Vol. 50 ›› Issue (6): 358-368.doi: 10.11896/jsjkx.220800151
• Interdiscipline & Frontier • Previous Articles
WANG Zihan, TONG Xiangrong
CLC Number:
[1]WANG K H C,BOTEA A.Fast and memory-efficient multi-agent pathfinding[C]//Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling.2008:380-387. [2]MA H,YANG J,COHEN L,et al.Feasibility study:Movingnon-homogeneous teams in congested video game environments[C]//Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.2017. [3]VEDDER K,BISWAS J.X*:Anytime multi-agent path finding for sparse domains using window-based iterative repairs[J].Artificial Intelligence,2021,291:103417. [4]HAN S D,YU J.Ddm:Fast near-optimal multi-robot path planning using diversified-path and optimal sub-problem solution database heuristics[J].IEEE Robotics and Automation Letters,2020,5(2):1350-1357. [5]BARTÁK R,VANCARA J,KOPKOVÁ V,et al.Multi-agent path finding on real robots[J].AI Communications,2019,32(3):175-189. [6]DRESNER K,STONE P.A multiagent approach to autonomous intersection management[J].Journal of Artificial Intelligence Research,2008,31:591-656. [7]BUZACHIS A,CELESTI A,GALLETTA A,et al.A multi-agent autonomous intersection management(MA-AIM) system for smart cities leveraging edge-of-things and Blockchain[J].Information Sciences,2020,522:148-163. [8]WALKER T T,CHAN D M,STURTEVANT N R.Using hie-rarchical constraints to avoid conflicts in multi-agent pathfinding[C]//Twenty-Seventh International Conference on Automated Planning and Scheduling.2017. [9]HÖNIG W,PREISS J A,KUMAR T K S,et al.Trajectory plan-ning for quadrotor swarms[J].IEEE Transactions on Robotics,2018,34(4):856-869. [10]CHE J Y,TONG X R.Dynamic Weighted Anytime BoundedCost Search Algorithm[C]//2021 7th International Conference on Systems and Informatics(ICSAI).IEEE,2021:1-6. [11]KONG R,TONG X R.Anytime dynamic heuristic search for suboptimal solution on path search[C]//2020 13th International Congress on Image and Signal Processing,BioMedical Enginee-ring and Informatics(CISP-BMEI).IEEE,2020:1070-1074. [12]KONG R,TONG X R.Dynamic weighted heuristic trust path search algorithm[J].IEEE Access,2020,8:157382-157390. [13]WEI T,TONG X R.Robust trust path generation based on weighted heuristic search[J].Journal of Nanjing University,2018,54(6):1161-1170. [14]LIU Y,CHEN M,HUANG H.Multi-agent pathfinding based on improved cooperative A* in Kiva system[C]//2019 5th International conference on control,automation and robotics(ICCAR).IEEE,2019:633-638. [15]LI J,TINKA A,KIESEL S,et al.Lifelong multi-agent pathfinding in large-scale warehouses[C]//Association for the Advancement of Artificial Intelligence.2020:1898-1900. [16]SUN S,GU C,WAN Q,et al.CROTPN based collision-free and deadlock-free path planning of AGVs in logistic center[C]//2018 15th International Conference on Control,Automation,Robotics and Vision(ICARCV).IEEE,2018:1685-1691. [17]ZHANG Z,WU L,ZHANG W,et al.Energy-efficient path planning for a single-load automated guided vehicle in a manufactu-ring workshop[J].Computers & Industrial Engineering,2021,158:107397. [18]HART P E,NILSSON N J,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE transactions on Systems Science and Cybernetics,1968,4(2):100-107. [19]SURYNEK P.Towards optimal cooperative path planning inhard setups through satisfiability solving[C]//Pacific Rim International Conference on Artificial Intelligence.Berlin/Heidelberg:Springer,2012:564-576. [20]SURYNEK P,FELNER A,STERN R,et al.Efficient SAT approach to multi-agent path finding under the sum of costs objective[C]//Proceedings of the Twenty-second European Confe-rence on Artificial Intelligence.2016:810-818. [21]SURYNEK P,STERN R,BOYARSKI E,et al.Migrating Techniques from Search-Based Multi-Agent Path Finding Solvers to SAT-Based Approach[J].Journal of Artificial Intelligence Research,2022,73:553-618. [22]YU J,LAVALLE S M.Planning optimal paths for multiple robots on graphs[C]//2013 IEEE International Conference on Robotics and Automation.IEEE,2013:3612-3617. [23]YU J,LAVALLE S M.Optimal multirobot path planning on graphs:Complete algorithms and effective heuristics[J].IEEE Transactions on Robotics,2016,32(5):1163-1177. [24]WANG H,CHEN W.Multi-Robot Path Planning With DueTimes[J].IEEE Robotics and Automation Letters,2022,7(2):4829-4836. [25]RYAN M.Constraint-based multi-robot path planning[C]//2010 IEEE International Conference on Robotics and Automation.IEEE,2010:922-928. [26]SHARON G,STERN R,GOLDENBERG M,et al.The increasing cost tree search for optimal multi-agent pathfinding[J].Artificial Intelligence,2013,195:470-495. [27]SHARON G,STERN R,FELNER A,et al.Conflict-basedsearch for optimal multi-agent pathfinding[J].Artificial Intelligence,2015,219:40-66. [28]STERN R,STURTEVANT N R,FELNER A,et al.Multi-agent pathfinding:Definitions,variants,and benchmarks[C]//Twelfth Annual Symposium on Combinatorial Search.2019. [29]LIU Q Z,WU F.Research progress of multi-agent path planning[J].Computer Engineering,2020,46(4):1-10. [30]CHE J,TONG X,KONG R.Intelligent trust path search[C]//2020 13th International Congress on Image and Signal Proces-sing,BioMedical Engineering and Informatics(CISP-BMEI).IEEE,2020:1075-1080. [31]STANDLEY T.Finding optimal solutions to cooperative pathfinding problems[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2010. [32]FELNER A,GOLDENBERG M,SHARON G,et al.Partial-expansion A* with selective node generation[C]//Twenty-Sixth AAAI Conference on Artificial Intelligence.2012. [33]SILVER D.Cooperative Pathfinding[J].Aiide,2005,1:117-122. [34]SRINIVASAN A,HAM T,MALIK S,et al.Algorithms for discrete function manipulation[C]//1990 IEEE International Conference on Computer-Aided Design.IEEE Computer Society,1990:92-95. [35]BOYARSKI E,FELNER A,STERN R,et al.ICBS:Improved conflict-based search algorithm for multi-agent pathfinding[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence.2015. [36]LI J,HARABOR D,STUCKEY P J,et al.Disjoint splitting for multi-agent path finding with conflict-based search[C]//Proceedings of the International Conference on Automated Planning and Scheduling.2019:279-283. [37]SHARON G,STERN R,FELNER A,et al.Meta-agent conflict-based search for optimal multi-agent path finding[C]//International Symposiumon Combinatorial Search.2012. [38]LEE H,MOTES J,MORALES M,et al.Parallel HierarchicalComposition Conflict-Based Search for Optimal Multi-Agent Pathfinding[J].IEEE Robotics and Automation Letters,2021,6(4):7001-7008. [39]FELNER A,LI J,BOYARSKI E,ET AL.Adding heuristics to conflict-based search for multi-agent path finding[C]//Procee-dings of the International Conference on Automated Planning and Scheduling.2018. [40]FELNER A,KORF R E,HANAN S.Additive pattern database heuristics[J].Journal of Artificial Intelligence Research,2004,22:279-318. [41]LI J,FELNER A,BOYARSKI E,et al.Improved heuristics for multi-agent path finding with conflict-based search[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.2019:442-449. [42]BOYARSKI E,FELNER A,LE BODIC P,et al.f-Aware con-flict prioritization & Improved heuristics for conflict-based search[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:12241-12248. [43]LI J,HARABOR D,STUCKEY P J,et al.Symmetry-breaking constraints for grid-based multi-agent path finding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:6087-6095. [44]LI J,GANGE G,HARABOR D,et al.New techniques for pairwise symmetry breaking in multi-agent path finding[C]//Proceedings of the International Conference on Automated Planning and Scheduling.2020,30:193-201. [45]LI J,HARABOR D,STUCKEY P J,et al.Pairwise symmetry reasoning for multi-agent path finding search[J].Artificial Intelligence,2021,301:103574. [46]BOYARSKI E,FELNER A,LE BODIC P,et al.Further improved heuristics for conflict-based search[C]//Proceedings of the International Symposium on Combinatorial Search.2021:213-215. [47]YU J,LAVALLE S M.Structure and intractability of optimal multi-robot path planning on graphs[C]//Twenty-Seventh AAAI Conference on Artificial Intelligence.2013. [48]MA H,TOVEY C,SHARON G,et al.Multi-agent path finding with payload transfers and the package-exchange robot-routing problem[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. [49]POHL I.Heuristic search viewed as path finding in a graph[J].Artificial Intelligence,1970,1(3/4):193-204. [50]PEARL J,KIM J H.Studies in semi-admissible heuristics[J].IEEE Transactionson Pattern Analysis and Machine Intelligence,1982(4):392-399. [51]BARER M,SHARON G,STERN R,et al.Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem[C]//Seventh Annual Symposium on Combinatorial Search.2014. [52]CHAN S H,LI J,GANGE G,et al.ECBS with flex distribution for bounded-suboptimal multi-agent path finding[C]//Procee-dings of the International Symposium on Combinatorial Search.2021:159-161. [53]RAHMAN M,ALAM M A,ISLAM M M,et al.An Adaptive Agent-Specific Sub-Optimal Bounding Approach for Multi-Agent Path Finding[J].IEEE Access,2022,10:22226-22237. [54]LI J,RUML W,KOENIG S.EECBS:A bounded-suboptimalsearch for multi-agent path finding[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI).2021. [55]SEMIZ F,POLAT F.Incremental multi-agent path finding[J].Future Generation Computer Systems,2021,116:220-233. [56]KOENIG S,LIKHACHEV M.D*lite[C]//Eighteenth National Conference on Artificial Intelligence,American Association for Artificial Intelligence.Menlo Park,USA:CA,2002:476-483. [57]MA H,LI J,KUMAR T K S,et al.Lifelong multi-agent path finding for online pickup and delivery tasks[C]//Proceedings of the International Conference on Autonomous Agents and Multiagent Systems(AAMAS).2017:837-845. [58]WAN Q,GU C,SUN S,et al.Lifelong multi-agent path finding in a dynamic environment[C]//2018 15th International Confe-rence on Control,Automation,Robotics and Vision(ICARCV).IEEE,2018:875-882. [59]WALKER T T,STURTEVANT N R,FELNER A.Extended increasing cost tree search for non-unit cost fomains[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence.2018:534-540. [60]ANDREYCHUK A,YAKOVLEV K,ATZMON D,et al.Multi-agent pathfinding with continuous time[C]//IJCAI Interna-tional Joint Conference on Artificial Intelligence.2019:39-45. [61]PHILLIPS M,LIKHACHEV M.Sipp:Safe interval path planning for dynamic environments[C]//2011 IEEE International Conference on Robotics and Automation.IEEE,2011:5628-5635. [62]ANDREYCHUK A,YAKOVLEV K,BOYARSKI E,et al.Improving continuous-time conflict based search[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11220-11227. [63]COHEN L,URAS T,KUMAR T K S,et al.Optimal andbounded-suboptimal multi-agent motion planning[C]//Twelfth Annual Symposium on Combinatorial Search.2019. [64]AI B,JIANG J,YU S,et al.Multi-agent path finding with hete-rogeneous edges and roundtrips[J].Knowledge-Based Systems,2021,234:107554. [65]SHAHAR T,SHEKHAR S,ATZMON D,et al.Safe Multi-Agent Pathfinding with Time Uncertainty[J].Journal of Artificial Intelligence Research,2021,70:923-954. [66]SOLIS I,MOTES J,SANDSTRÖM R,et al.Representation-optimal multi-robot motion planning using conflict-based search[J].IEEE Robotics and Automation Letters,2021,6(3):4608-4615. [67]MA H,WAGNER G,FELNER A,et al.Multi-agent path fin-ding with deadlines[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.2018:417-423. [68]ATZMON D,STERN R,FELNER A,et al.Robust multi-agent path finding[C]//Eleventh Annual Symposium on Combinato-rial Search.2018. [69]ATZMON D,STERN R,FELNER A,et al.Robust multi-agent path finding and executing[J].Journal of Artificial Intelligence Research,2020,67:549-579. [70]CHEN Z,HARABOR D,LI J,et al.Symmetry breaking for k-robust multi-agent path finding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:12267-12274. [71]WEN L,LIU Y,LI H.CL-MAPF:Multi-Agent Path Finding for Car-Like robots with kinematic and spatiotemporal constraints[J].Robotics and Autonomous Systems,2022,150:103997. [72]YU L,WANG Z.Multi-Robot Robust Motion Planning based on Model Predictive Priority Contouring Control with Double-Layer Corridors[J].Applied Sciences,2022,12(3):1682. [73]LIU Z,WANG H,WEI H,et al.Prediction,planning,and coordination of thousand-warehousing-robot networks with motion and communication uncertainties[J].IEEE Transactions on Automation Science and Engineering,2020,18(4):1705-1717. [74]VARGA L Z.Solutions to the routing problem:towards trustworthy autonomous vehicles[J].Artificial Intelligence Review,2022,55:5445-5484. [75]HO F,GERALDES R,GONÇALVES A,et al.Decentralizedmulti-agent path finding for UAV traffic management[J].IEEE Transactions on Intelligent Transportation Systems,2022,23:997-1008. [76]PIANPAK P,SON T C,TOUPS Z O,et al.A distributed solver for multi-agent path finding problems[C]//Proceedings of the First International Conference on Distributed Artificial Intelligence.2019:1-7. [77]FINES K,SHARPANSKYKH A,VERT M.Agent-based dis-tributed planning and coordination for resilient airport surface movement operations[J].Aerospace,2020,7(4):48. [78]HUANG T,KOENIG S,DILKINA B.Learning to resolve conflicts for multi-agent path finding with conflict-based search[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11246-11253. [79]SURYNEK P,STERN R,BOYARSKI E,et al.Migrating Techniques from Search-based Multi-Agent Path Finding Solvers to SAT-based Approach[J].Journal of Artificial Intelligence Research,2022,73:553-618. |
[1] | WANG Dongli, YANG Shan, OUYANG Wanli, LI Baopu, ZHOU Yan. Explainability of Artificial Intelligence:Development and Application [J]. Computer Science, 2023, 50(6A): 220600212-7. |
[2] | XING Ying. Review of Software Engineering Techniques and Methods Based on Explainable Artificial Intelligence [J]. Computer Science, 2023, 50(5): 3-11. |
[3] | ZHANG Qiyang, CHEN Xiliang, CAO Lei, LAI Jun, SHENG Lei. Survey on Knowledge Transfer Method in Deep Reinforcement Learning [J]. Computer Science, 2023, 50(5): 201-216. |
[4] | ZHANG Qiyang, CHEN Xiliang, ZHANG Qiao. Sparse Reward Exploration Method Based on Trajectory Perception [J]. Computer Science, 2023, 50(1): 262-269. |
[5] | LI Ye, CHEN Song-can. Physics-informed Neural Networks:Recent Advances and Prospects [J]. Computer Science, 2022, 49(4): 254-262. |
[6] | LI Sun, CAO Feng, LIU Zi-shan. Study on Quality Evaluation Method of Speech Datasets for Algorithm Model [J]. Computer Science, 2022, 49(11A): 210800246-6. |
[7] | ZHAO Hong, CHANG You-kang, WANG Wei-jie. Survey of Adversarial Attacks and Defense Methods for Deep Neural Networks [J]. Computer Science, 2022, 49(11A): 210900163-11. |
[8] | WANG Lu, WEN Wu-song. Study on Distributed Intrusion Detection System Based on Artificial Intelligence [J]. Computer Science, 2022, 49(10): 353-357. |
[9] | CHAO Le-men, YIN Xian-long. AI Governance and System:Current Situation and Trend [J]. Computer Science, 2021, 48(9): 1-8. |
[10] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui, SHI Da. Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation [J]. Computer Science, 2021, 48(7): 77-85. |
[11] | JING Hui-yun, WEI Wei, ZHOU Chuan, HE Xin. Artificial Intelligence Security Framework [J]. Computer Science, 2021, 48(7): 1-8. |
[12] | XIE Chen-qi, ZHANG Bao-wen, YI Ping. Survey on Artificial Intelligence Model Watermarking [J]. Computer Science, 2021, 48(7): 9-16. |
[13] | JING Hui-yun, ZHOU Chuan, HE Xin. Security Evaluation Method for Risk of Adversarial Attack on Face Detection [J]. Computer Science, 2021, 48(7): 17-24. |
[14] | QIN Zhi-hui, LI Ning, LIU Xiao-tong, LIU Xiu-lei, TONG Qiang, LIU Xu-hong. Overview of Research on Model-free Reinforcement Learning [J]. Computer Science, 2021, 48(3): 180-187. |
[15] | CAO Bo, CHEN Feng, CHENG Jing, LI Hua, LI Yong-le. Route Planning of Unstructured Road Including Repeat Node Based on Bidirectional Search [J]. Computer Science, 2021, 48(11A): 77-80. |
|