Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230200010-6.doi: 10.11896/jsjkx.230200010
• Image Processing & Multimedia Technology • Previous Articles Next Articles
WANG Yan, XIA Chuangshuai, WANG Na, NAN Peiqi
CLC Number:
[1]ASGARI TAGHANAKI S,ABHISHEK K,COHEN J P,et al.Deep semantic segmentation of natural and medical images:a review[J].Artificial Intelligence Review,2021,54:137-178. [2]HE X,ZHOU Y,ZHAO J,et al.Swin transformer embeddingUNet for remote sensing image semantic segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-15. [3]RIZZOLI G,BARBATO F,ZANUTTIGH P.Multimodal Se-mantic Segmentation in Autonomous Driving:A Review of Current Approaches and Future Perspectives[J].Technologies,2022,10(4):90. [4]CAO X,GAO S,CHEN L,et al.Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance[J].Multimedia Tools and Applications,2020,79(13):9177-9192. [5]MA J W,LEITE F.Performance boosting of conventional deep learning-based semantic segmentation leveraging unsupervised clustering[J].Automation in Construction,2022,136:104167. [6]LEE M,KIM D,SHIM H.Threshold matters in WSSS:manipulating the activation for the robust and accurate segmentation model against thresholds [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:4330-4339. [7]LIU Y,CHENG M M,FAN D P,et al.Semantic edge detection with diverse deep supervision[J].International Journal of Computer Vision,2022,130(1):179-198. [8]YU H,YANG Z,TAN L,et al.Methods and datasets on seman-tic segmentation:A review[J].Neurocomputing,2018,304:82-103. [9]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [10]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE transactions on pattern analysis and machine intelligence,2017,39(12):2481-2495. [11]PASZKE A,CHAURASIA A,KIM S,et al.Enet:A deep neural network architecture for real-time semantic segmentation[J].arXiv:1606.02147,2016. [12]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//InternationalConference on Medical Image Computing and Compu-ter-assisted Intervention.2015:234-241. [13]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [14]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [15]ZHAO H,QI X,SHEN X,et al.Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision.2018:405-420. [16]YU C,WANG J,PENG C,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision.2018:325-341. [17]YU C,GAO C,WANG J,et al.Bisenet v2:Bilateral networkwith guided aggregation for real-time semantic segmentation[J].International Journal of Computer Vision,2021,129(11):3051-3068. [18]WANG Y,ZHOU Q,LIU J,et al.Lednet:A lightweight encoder-decoder network for real-time semantic segmentation[C]//2019 IEEE International Conference on Image Proces-sing.2019:1860-1864. [19]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [20]CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:3213-3223. [21]EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes (voc) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [22]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [23]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [24]POUDEL R P K,LIWICKI S,CIPOLLA R.Fast-scnn:Fast semantic segmentation network[J].arXiv:1902.04502,2019. [25]WU Y,JIANG J,HUANG Z,et al.FPANet:Feature pyramid aggregation network for real-time semantic segmentation[J].Applied Intelligence,2022,52(3):3319-3336. [26]ELHASSAN M A M,HUANG C,YANG C,et al.DSANet:Dilated spatial attention for real-time semantic segmentation in urban street scenes[J].Expert Systems with Applications,2021,183:115090. [27]ZHUANG M,ZHONG X,GU D,et al.LRDNet:A lightweight and efficient network with refined dual attention decorder for real-time semantic segmentation [J].Neurocomputing,2021,459:349-360. |
[1] | ZHAO Mingmin, YANG Qiuhui, HONG Mei, CAI Chuang. Smart Contract Fuzzing Based on Deep Learning and Information Feedback [J]. Computer Science, 2023, 50(9): 117-122. |
[2] | LI Haiming, ZHU Zhiheng, LIU Lei, GUO Chenkai. Multi-task Graph-embedding Deep Prediction Model for Mobile App Rating Recommendation [J]. Computer Science, 2023, 50(9): 160-167. |
[3] | HUANG Hanqiang, XING Yunbing, SHEN Jianfei, FAN Feiyi. Sign Language Animation Splicing Model Based on LpTransformer Network [J]. Computer Science, 2023, 50(9): 184-191. |
[4] | CHEN Guojun, YUE Xueyan, ZHU Yanning, FU Yunpeng. Study on Building Extraction Algorithm of Remote Sensing Image Based on Multi-scale Feature Fusion [J]. Computer Science, 2023, 50(9): 202-209. |
[5] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[6] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[7] | LUO Yuanyuan, YANG Chunming, LI Bo, ZHANG Hui, ZHAO Xujian. Chinese Medical Named Entity Recognition Method Incorporating Machine ReadingComprehension [J]. Computer Science, 2023, 50(9): 287-294. |
[8] | LI Ke, YANG Ling, ZHAO Yanbo, CHEN Yonglong, LUO Shouxi. EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction [J]. Computer Science, 2023, 50(9): 318-330. |
[9] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[10] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[11] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
[12] | ZHOU Ziyi, XIONG Hailing. Image Captioning Optimization Strategy Based on Deep Learning [J]. Computer Science, 2023, 50(8): 99-110. |
[13] | TENG Sihang, WANG Lie, LI Ya. Non-autoregressive Transformer Chinese Speech Recognition Incorporating Pronunciation- Character Representation Conversion [J]. Computer Science, 2023, 50(8): 111-117. |
[14] | ZHANG Xiao, DONG Hongbin. Lightweight Multi-view Stereo Integrating Coarse Cost Volume and Bilateral Grid [J]. Computer Science, 2023, 50(8): 125-132. |
[15] | WANG Jiahao, ZHONG Xin, LI Wenxiong, ZHAO Dexin. Human Activity Recognition with Meta-learning and Attention [J]. Computer Science, 2023, 50(8): 193-201. |
|