Computer Science ›› 2024, Vol. 51 ›› Issue (10): 227-233.doi: 10.11896/jsjkx.230800167
• Database & Big Data & Data Science • Previous Articles Next Articles
LIU Zulong1, CHEN Kejia1,2,3
CLC Number:
[1]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [2]GOYAL P,FERRARA E.Graph embedding techniques,applica-tions,and performance:A survey[J].Knowledge-Based Systems,2018,151:78-94. [3]KUMAR A,SINGH S S,SINGH K,et al.Link prediction techniques,applications,and performance:A survey[J].Physica A:Statistical Mechanics and Its Applications,2020,553:124289. [4]ZHOU J,CUI G,HU S,et al.Graph neural networks:A review of methods and applications[J].AI Open,2020,1:57-81. [5]HE D,WANG T,ZHAI L,et al.Adversarial RepresentationMechanism Learning for Network Embedding[J].IEEE Tran-sactions on Knowledge & Data Engineering,2023,35(2):1200-1213. [6]JIN D,HUO C,LIANG C,et al.Heterogeneous graph neuralnetwork via attribute completion[C]//Proceedings of the ACM Web Conference.2021:391-400. [7]THOMAS N K,MAX W.Semi-Supervised Classification withGraph Convolutional Networks[C]//Proceedings of the International Conference on Learning Representations.2017. [8]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [9]BARABÁSI A L,BONABEAU E.Scale-free networks[J].Scientific American,2003,288(5):60-69. [10]PAGE L,BRIN S,MOTWANI R,et al.The pagerank citation ranking:Bring order to the web[R].Stanford University:Technical Report,1998. [11]CIOTTI V,BONAVENTURA M,NICOSIA V,et al.Homophily and missing links in citation networks[J].EPJ Data Science,2016,5:1-14. [12]LIU Y,ZHENG Y,ZHANG D,et al.Towards unsuperviseddeep graph structure learning[C]//Proceedings of the ACM Web Conference.2022:1392-1403. [13]ZHENG X,LIU Y,PAN S,et al.Graph neural networks for graphs with heterophily:A survey[J].arXiv:2202.07082,2022. [14]ZHU J,YAN Y,ZHAO L,et al.Beyond homophily in graph neural networks:Current limitations and effective designs[J].Advances in Neural Information Processing Systems,2020,33:7793-7804. [15]SOVIANY P,IONESCU R T,ROTA P,et al.Curriculum lear-ning:A survey[J].International Journal of Computer Vision,2022,130(6):1526-1565. [16]LIU Z,NGUYEN T K,FANG Y.Tail-gnn:Tail-node graphneural networks[C]//Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:1109-1119. [17]ZHENG W,HUANG E W,RAO N,et al.Cold Brew:Distilling Graph Node Representations with Incomplete or Missing Neighborhoods[C]//International Conference on Learning Representations.2021. [18]XIA F,WANG L,TANG T,et al.Cengcn:Centralized convolutional networks with vertex imbalance for scale-free graphs[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(5):4555-4569. [19]SUN Q,LI J,YUAN H,et al.Position-aware structure learning for graph topology-imbalance by relieving under-reaching and over-squashing[C]//Proceedings of the ACM International Conference on Information & Knowledge Management.2022:1848-1857. [20]FU X,WEI Y,SUN Q,et al.Hyperbolic Geometric Graph Representation Learning for Hierarchy-imbalance Node Classification[C]//Proceedings of the ACM Web Conference.2023:460-468. [21]GUO S,HUANG W,ZHANG H,et al.Curriculumnet:Weakly supervised learning from large-scale web images[C]//Procee-dings of the European Conference on Computer Vision (ECCV).2018:135-150. [22]JIANG L,MENG D,MITAMURA T,et al.Easy samples first:Self-paced reranking for zero-example multimedia search[C]//Proceedings of the ACM International Conference on Multi-media.2014:547-556. [23]PLATANIOS E A,STRETCU O,NEUBIG G,et al.Compe-tence-based Curriculum Learning for Neural Machine Translation[C]//Proceedings of NAACL-HLT.2019:1162-1172. [24]TAY Y,WANG S,LUU A T,et al.Simple and Effective Curri-culum Pointer-Generator Networks for Reading Comprehension over Long Narratives[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics.2019:4922-4931. [25]LI H,WANG X,ZHU W.Curriculum Graph Machine Lear-ning:A Survey[J].arXiv:2302.02926,2023. [26]WANG Y,WANG W,LIANG Y,et al.Curgraph:Curriculumlearning for graph classification[C]//Proceedings of the ACM Web Conference.2021:1238-1248. [27]CHU G,WANG X,SHI C,et al.CuCo:Graph Representation with Curriculum Contrastive Learning[C]// Proceedings of the International Joint Conference on Artificial Intelligence.2021:2300-2306. [28]WANG H,ZHOU K,ZHAO X,et al.Curriculum pre-trainingheterogeneous subgraph transformer for top-n recommendation[J].ACM Transactions on Information Systems,2023,41(1):1-28. [29]WEI X,GONG X,ZHAN Y,et al.Clnode:Curriculum learning for node classification[C]//Proceedings of the ACM International Conference on Web Search and Data Mining.2023:670-678. [30]LI X,WEN L,DENG Y,et al.Graph neural network with curriculum learning for imbalanced node classification[J].arXiv:2202.02529,2022. [31]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357. [32]LIU Y,YANG X,ZHOU S,et al.Hard sample aware network for contrastive deep graph clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023,37(7):8914-8922. [33]HACOHEN G,WEINSHALL D.On the power of curriculumlearning in training deep networks[C]// Proceedings of International Conference on Machine Learning.2019:2535-2544. [34]PLATANIOS E A,STRETCU O,NEUBIG G,et al.Compe-tence-based Curriculum Learning for Neural Machine Translation[C]//Proceedings of NAACL-HLT.2019:1162-1172. [35]MCCALLUM A K,NIGAM K,RENNIE J,et al.Automating the construction of internet portals with machine learning[J].Information Retrieval,2000,3:127-163. [36]GILES C L,BOLLACKER K D,LAWRENCE S.CiteSeer:An automatic citation indexing system[C]//Proceedings of the ACM Conference on Digital Libraries.1998:89-98. [37]SEN P,NAMATA G,BILGIC M,et al.Collective classification in network data[J].AI Magazine,2008,29(3):93. [38]HU W,FEY M,ZITNIK M,et al.Open graph benchmark:Datasets for machine learning on graphs[J].Advances in Neural Information Processing Systems,2020,33:22118-22133. [39]PEI H,WEI B,CHANG K C C,et al.Geom-GCN:Geometric Graph Convolutional Networks[C]//International Conference on Learning Representations.2019. [40]ROZEMBERCZKI B,ALLEN C,SARKAR R.Multi-Scale at-tributed node embedding[J].Journal of Complex Networks,2021,9(1):1-22. [41]TANG J,SUN J,WANG C,et al.Social influence analysis in large-scale networks[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2009:807-816. [42]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.GraphAttention Networks[C]//International Conference on Learning Representations.2018. |
[1] | YUAN Lining, FENG Wengang, LIU Zhao. Multi-channel Graph Convolutional Networks Enhanced by Label Propagation Algorithm [J]. Computer Science, 2024, 51(8): 304-312. |
[2] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[3] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[4] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[5] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
[6] | LU Min, YUAN Ziting. Graph Contrast Learning Based Multi-graph Neural Network for Session-based RecommendationMethod [J]. Computer Science, 2024, 51(5): 54-61. |
[7] | ZHANG Liying, SUN Haihang, SUN Yufa , SHI Bingbo. Review of Node Classification Methods Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(4): 95-105. |
[8] | ZHANG Tao, LIAO Bin, YU Jiong, LI Ming, SUN Ruina. Benchmarking and Analysis for Graph Neural Network Node Classification Task [J]. Computer Science, 2024, 51(4): 132-150. |
[9] | ZHENG Cheng, SHI Jingwei, WEI Suhua, CHENG Jiaming. Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-basedSentiment Analysis [J]. Computer Science, 2024, 51(3): 205-213. |
[10] | XU Tianyue, LIU Xianhui, ZHAO Weidong. Knowledge Graph and User Interest Based Recommendation Algorithm [J]. Computer Science, 2024, 51(2): 55-62. |
[11] | LIAO Bin, ZHANG Tao, YU Jiong, LI Min. NLGAE:A Graph Autoencoder Model Based on Improved Network Structure and Loss Functionfor Node Classification Task [J]. Computer Science, 2024, 51(10): 234-246. |
[12] | LUO Ruiqing, ZENG Kun, ZHANG Xinjing. Curriculum Learning Framework Based on Reinforcement Learning in Sparse HeterogeneousMulti-agent Environments [J]. Computer Science, 2024, 51(1): 301-309. |
[13] | GUO Yuxing, YAO Kaixuan, WANG Zhiqiang, WEN Liangliang, LIANG Jiye. Black-box Graph Adversarial Attacks Based on Topology and Feature Fusion [J]. Computer Science, 2024, 51(1): 355-362. |
[14] | JIANG Linpu, CHEN Kejia. Self-supervised Dynamic Graph Representation Learning Approach Based on Contrastive Prediction [J]. Computer Science, 2023, 50(7): 207-212. |
[15] | SHAO Yunfei, SONG You, WANG Baohui. Study on Degree of Node Based Personalized Propagation of Neural Predictions forSocial Networks [J]. Computer Science, 2023, 50(4): 16-21. |
|