Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230900038-11.doi: 10.11896/jsjkx.230900038
• Big Data & Data Science • Previous Articles Next Articles
HUANG Chungan, WANG Guiping, WU Bo, BAI Xin
CLC Number:
[1]WU L,HE X,WANG X,et al.A Survey on Accuracy-oriented Neural Recommendation:From Collaborative Filtering to Information-rich Recommendation[C]//IEEE Transactions on Knowledge and Data Engineering.2022. [2]HU R,PU P.Helping Users Perceive Recommendation Diversity[C]//DiveRS@RecSys.Chicago,USA:ACM,2011:43-50. [3]JIANG Z,LIU H,FU B,et al.Recommendation in heterogeneous information networks based on generalized random walk model and bayesian personalized ranking[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.Marina Del Rey CA USA:ACM,2018:288-296. [4]PAUDEL B,BERNSTEIN A.Random Walks with Erasure:Di-versifying Personalized Recommendations on Social and Information Networks[C]//Proceedings of the Web Conference 2021.Ljubljana Slovenia:ACM,2021:2046-2057. [5]HE X,DENG K,WWANG X,et al.LightGCN:Simplifying and Power-ing Graph Convolution Network for Recommendation[M].arXiv,2020. [6]MAO K,ZHU J,XIAO X,et al.UltraGCN:Ultra Simplification of Graph Convolutional Networks for Recommendation[M].arXiv,2021. [7]WANG H,ZHAO M,XIE X,et al.Knowledge graph convolu-tional networks for recommender systems[C]//The World Wide Web Conference on WWW ’19.San Francisco,CA,USA:ACM Press,2019:3307-3313. [8]WANG X,HE X,WANG M,et al.Neural Graph Collaborative Filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [9]ZHENG Y,GAO C,CHEN L,et al.DGCN:Diversified Rec-ommendation with Graph Convolutional Networks[C]//Procee-dings of the Web Conference 2021.New York,NY,USA:Asso-ciation for Computing Machinery,2021:401-412. [10]LIANG Y,QIAN T,LI Q,et al.Enhancing Domain-Level and User-Level Adaptivity in Diversified Recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,NY,USA:Association for Computing Machinery,2021:747-756. [11]LIU Y,XIAO Y,WU Q,et al.Diversified Interactive Recom-mendation with Implicit Feedback[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:4932-4939. [12]ZHOU T,KUSCSIK Z,LIU J G,et al.Solving the apparent diversity-accuracy dilemma of recommender systems[J].Procee-dings of the National Academy of Sciences of the United States of America,2010,107(10):4511-4515. [13]SHA C,WU X,NIU J.A framework for recommending relevant and diverse items[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.New York,USA:AAAI,2016:3868-3874. [14]MEI D,HUANG N,LI X.Light Graph Convolutional Collaborative Filtering With Multi-Aspect Information[J].IEEE Access,2021,9:34433-34441. [15]CHEN L,ZHANG G,ZHOU E.Fast Greedy MAP Inference for Determinantal Point Process to Improve Recommendation Diversi-ty[C]//Advances in Neural Information Processing Systems:31.Curran Associates,Inc.,2018. [16]DEREZIN'SKI M.Fast determinantal point processes via distor-tion-free intermediate sampling[M].arXiv,2019. [17]GAN L,NURBAKOVA D,LAPORTE L,et al.Enhancing Recommendation Diversity using Determinantal Point Processes on Knowledge Graphs[C]//Proceedings of the 43rd International Acm Sigir Conference on Research and Development in Information Retrieval(sigir ’20).New York:Assoc Computing Machi-nery,2020:2001-2004. [18]ABDOLLAHPOURI H,BURKE R,MOBASHER B.Managing popularity bias in recommender systems with personalized re-ranking[J].arXiv:1901.07555,2019. [19]CARBONELL J,GOLDSTEIN J.The use of MMR,diversity-based reranking for reordering documents and producing summaries[C]//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR ’98).Melbourne,Australia:ACM Press,1998:335-336. [20]CHENG P,WANG S,MA J,et al.Learning to Recommend Accurate and Diverse Items[C]//Proceedings of the 26th International Conference on World Wide Web.Perth Australia:International World Wide Web Conferences Steering Committee,2017:183-192. [21]ASHKAN A,KVETON B,BERKOVSKY S,et al.OptimalGreedy Diversity for Recommendation[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence.2015. [22]ZUO Y,LIU S,ZHOU Y.DTGCF:Diversified Tag-Aware Re-commendation with Graph Collaborative Filtering[J].Applied Sciences,2023,13(5):2945. [23]YANG L,WANG S,TAO Y,et al.DGRec:Graph Neural Net-work for Recommendation with Diversified Embedding Genera-tion[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining.2023:661-669. [24]ABADAL S,JAIN A,GUIRADO R,et al.Computing GraphNeural Networks:A Survey from Algorithms to Accelerators[J].ACM Computing Surveys,2022,54(9):1-38. [25]WAIKHOM L,PATGIRI R.Graph Neural Networks:Me-thods,Applications,and Opportunities[M].arXiv,2021. [26]ZHOU Y,ZHENG H,HUANG X,et al.Graph Neural Net-works:Taxonomy,Advances and Trends[J].ACM Transactions on Intelligent Systems and Technology,2022,13(1):1-54. [27]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [28]LI Z,LIU Z,HUANG J,et al.MV-GCN:Multi-View GraphConvolutional Networks for Link Prediction[J].IEEE Access,2019,7:176317-176328. [29]GAO X,FENG F,HUANG H,et al.Food recommendation with graph convolutional network[J].Information Sciences,2022,584:170-183. [30]KIM J Y,CHO S B.A systematic analysis and guidelines of graph neural networks for practical applications[J].Expert Systems with Applications,2021,184:115466. [31]LI Y.A graph convolution network based on improved density clustering for recommendation system[J].Information Techno-logy and Control,2022,51(1):18-31. [32]TANG X,YANG J,XIONG D,et al.Knowledge-enhanced graph convolutional network for recommendation[J].Multimedia Tools and Applications,2022,81(20):28899-28916. [33]CHEN L,WU L,HONG R,et al.Revisiting Graph Based Col-laborative Filtering:A Linear Residual Graph Convolutional Network Approach[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(1):27-34. [34]WU F,ZHANG T,SOUZA Jr.A H de,et al.Simplifying Graph Convolutional Networks[M].arXiv,2019. [35]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed Re-presentations of Words and Phrases and their Compositionality[M].arXiv,2013. [36]YANG Z,DING M,ZHOU C,et al.Understanding NegativeSampling in Graph Representation Learning[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.Virtual Event CA USA:ACM,2020:1666-1676. [37]ZHU Y,XU Y,LIU Q,et al.An Empirical Study of Graph Con-trastive Learning[M].arXiv,2021. [38]ZHU Y,XU Y,YU F,et al.Graph Contrastive Learning with Adaptive Augmentation[C]//Proceedings of the Web Conference 2021.2021:2069-2080. [39]WEI Y,WANG X,NIE L,et al.Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feed-back[C]//Proceedings of the 28th ACM International Confe-rence on Multimedia.New York,NY,USA:Association for Computing Machinery,2020:3541-3549. [40]ADOMAVICIUS G,KWON Y.Improving Aggregate Recom-mendation Diversity Using Ranking-Based Techniques[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(5):896-911. [41]REDDI S J,KALE S,KUMAR S.On the Convergence of Adam and Beyond[M].arXiv,2019. [42]WILHELM M,RAMANATHAN A,BONOMO A,et al.Practi-cal Diversified Recommendations on YouTube with Determinantal Point Processes[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.Torino Italy:ACM,2018:2165-2173. |
[1] | HAN Lijun, WANG Peng, LI Ruixu, LIU Zhongyao. Dual Direction Vectors-based Large-scale Multi-objective Evolutionary Algorithm [J]. Computer Science, 2024, 51(6A): 230700155-11. |
[2] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[3] | XIE Genlin, CHENG Guozhen, LIANG Hao, WANG Qingfeng. Software Diversity Composition Based on Multi-objective Optimization Algorithm NSGA-II [J]. Computer Science, 2024, 51(6): 85-94. |
[4] | LUO Ying, WAN Yuan, WANG Liqin. Category-specific and Diverse Shapelets Extraction for Time Series Based on Adversarial Strategies [J]. Computer Science, 2024, 51(5): 35-44. |
[5] | LI Junwei, LIU Quan, XU Yapeng. Option-Critic Algorithm Based on Mutual Information Optimization [J]. Computer Science, 2024, 51(2): 252-258. |
[6] | WANG Yu-fei, CHEN Wen. Tri-training Algorithm Based on DECORATE Ensemble Learning and Credibility Assessment [J]. Computer Science, 2022, 49(6): 127-133. |
[7] | CHEN Zhuang, ZOU Hai-tao, ZHENG Shang, YU Hua-long, GAO Shang. Diversity Recommendation Algorithm Based on User Coverage and Rating Differences [J]. Computer Science, 2022, 49(5): 159-164. |
[8] | CHI Yu-ning, GUO Yun-fei, WANG Ya-wen, HU Hong-chao. Software Diversity Evaluation Method Based on Multi-granularity Features [J]. Computer Science, 2022, 49(12): 118-124. |
[9] | LIU Yi, MAO Ying-chi, CHENG Yang-kun, GAO Jian, WANG Long-bao. Locality and Consistency Based Sequential Ensemble Method for Outlier Detection [J]. Computer Science, 2022, 49(1): 146-152. |
[10] | ZHOU Gang, GUO Fu-liang. Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data [J]. Computer Science, 2021, 48(6A): 250-254. |
[11] | YU Sheng, LI Bin, SUN Xiao-bing, BO Li-li, ZHOU Cheng. Approach for Knowledge-driven Similar Bug Report Recommendation [J]. Computer Science, 2021, 48(5): 91-98. |
[12] | YU Dun-hui, CHENG Tao, YUAN Xu. Software Crowdsourcing Task Recommendation Algorithm Based on Learning to Rank [J]. Computer Science, 2020, 47(12): 106-113. |
[13] | KANG Yan, BU Rong-jing, LI Hao, YANG Bing, ZHANG Ya-chuan, CHEN Tie. Neural Collaborative Filtering Based on Enhanced-attention Mechanism [J]. Computer Science, 2020, 47(10): 114-120. |
[14] | ZHANG Yan-hong, ZHANG Chun-guang, ZHOU Xiang-zhen, WANG Yi-ou. Diverse Video Recommender Algorithm Based on Multi-property Fuzzy Aggregate of Items [J]. Computer Science, 2019, 46(8): 78-83. |
[15] | GUO Xu, ZHU Jing-hua. Deep Neural Network Recommendation Model Based on User Vectorization Representation and Attention Mechanism [J]. Computer Science, 2019, 46(8): 111-115. |
|