Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230900153-7.doi: 10.11896/jsjkx.230900153
• Image Processing & Multimedia Technolog • Previous Articles Next Articles
XIAO Yahui1, ZHANG Zili1,2, HU Xinrong1,2, PENG Tao1,2, ZHANG Jun3
CLC Number:
[1]HAN D Y,QIN X,LIU B S.Colored clothing image segmentation based on watershed region merging[J].Journal of Guangxi Normal University(Natural Science Edition),2015,32(4):75-81. [2]GAO Y P,SONG D,WANG Y J,et al.A modified K-means clustering clothing image segmentation algorithm[J].Journal of Hunan College of Engineering(Natural Science Edition),2021,31(2):54-59. [3]LONG J,SHELHAMER E,DARRELL T.Fullyconvolutionalnetworks for semanticsegmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [4]RONNEBERGER O,FISCHER P,BROX T.Unet:Convolu-tional networks for biomedical image segmentation[C]//18th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI 2015).Munich,Germany,Part III 18.Springer International Publishing,2015:234-241. [5]ZHAO H,SHI J,QI X,et al.Pyramid scene par-sing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [6]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected crfs[J].arXiv:1412.7062,2014. [7]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [8]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [9]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder decoder with atrous separable convolution for semantic imagesegmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [10]YANG S,XU Z B,CHEN C.Automatic clothing image segmentation based on Faster R-CNN and Grabcut algorithm[J].Intelligent Computers and Applications,2020,10(7):306-310. [11]HUANG Z,WANG X,HUANG L,et al.Ccnet:Criss cross at-tention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:603-612. [12]LI X,ZHONG Z,WU J,et al.Expectation maximization attention networks for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9167-9176. [13]ZHONG Z,LIN Z Q,BIDARTR,et al.Squeeze and attention networks for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:13065-13074. [14]SONG Q,LI J,LI C,et al.Fully attentional network for semantic segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022,36(2):2280-2288. [15]HU J,SHEN L,SUNG.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [16]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedingsof the European Conference on Computer Vision(ECCV).2018:3-19. [17]SONG Q,MEI K,HUANG R.AttaNet:Attention augmentednetwork for fast and accurate scene parsing[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:2567-2575. [18]ZHANG C,LIU X P,YUAN H,et al.Milling machine clastic image segmentation method based on improved DeepLabV3+[J].Journal of Optoelectronics,Lasers,2023(5):489-497. [19]GUO J,XIN Y L,XIE Q Q.Improved building segmentation in remote sensing image based on DeepLabV3+[J].Laser Journal,2023:1-10. [20]GU M H,LIU J,LI L Y,et al.Combining with the characteristics of learning and attention mechanism of clothing image segmentation[J].Journal of Textile,Lancet,2022(11):163-171. [21]ZHAO Y,HE J.Clothing image segmentation using Deeplabv3+algorithm with dual attention mechanism[J].Journal of Chengdu University of Information Engineering,2022(1):67-71. [22]DENG F,FENG H,LIANG M,et al.FEANet:Feature en-hanced attention network for RGB thermal real time semantic segmentation[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2021:4467-4473. [23]XU J,XIONG Z,BHATTACHARYYA S P.PIDNet:A RealTime Semantic Segmentation Network Inspired by PID Controllers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:19529-19539. [24]LI X,YOU A,ZHU Z,et al.Semantic flow for fast and accurate scene parsing[C]//European Conference on Computer Vision.Cham:Springer,2020:775-793. [25]HUANG Z,WEI Y,WANG X,et al.Alignseg:Feature aligned segmentation networks[J].IEEE Transactions on Pattern Ana-lysis and Machine Intelligence,2021,44(1):550-557. [26]HUANG S,LU Z,CHENG R,et al.FaPN:Feature-aligned py-ramid network for dense image prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:864-873. [27]GE Y,ZHANG R,WANG X,et al.Deepfashion2:A versatile benchmark for detection,pose estimation,segmentation and reidentification of clothing images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5337-5345. [28]CAO H,WANG Y,CHEN J,et al.Swin unet:Unet like puretransformer for medical image segmentation[J].arXiv:2105.05537,2021. [29]WU H K,ZHANG J G,HUANG K Q,et al.FastFCN:rethinking dilated convolution in the backbone for semantic segmentation[J].arXiv:1903.11816,2001. |
[1] | ZHU Yuliang, LIU Juntao, RAO Ziyun, ZHANG Yi, CAO Wanhua. Knowledge Reasoning Model Combining HousE with Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600209-8. |
[2] | BAI Yu, WANG Xinzhe. Study on Hypernymy Recognition Based on Combined Training of Attention Mechanism and Prompt Learning [J]. Computer Science, 2024, 51(6A): 230700226-5. |
[3] | SUN Jifei, JIA Kebin. Classification and Detection Algorithm of Ground-based Cloud Images Based on Multi-scale Features [J]. Computer Science, 2024, 51(6A): 230400041-6. |
[4] | WANG Guogang, DONG Zhihao. Lightweight Image Semantic Segmentation Based on Attention Mechanism and Densely AdjacentPrediction [J]. Computer Science, 2024, 51(6A): 230300204-8. |
[5] | ZHAI Yunkai, QIAO Zhengwen, QIAO Yan. Forecasting Teleconsultation Demand Based on LSTM and Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230800119-7. |
[6] | ZHANG Lanxin, XIANG Ling, LI Xianze, CHEN Jinpeng. Intelligent Fault Diagnosis Method for Rolling Bearing Based on SAMNV3 [J]. Computer Science, 2024, 51(6A): 230700167-6. |
[7] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[8] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[9] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[10] | QUE Yue, GAN Menghan, LIU Zhiwei. Object Detection with Receptive Field Expansion and Multi-branch Aggregation [J]. Computer Science, 2024, 51(6A): 230600151-6. |
[11] | HE Xinyu, LU Chenxin, FENG Shuyi, OUYANG Shangrong, MU Wentao. Ship Detection and Recognition of Optical Remote Sensing Images for Embedded Platform [J]. Computer Science, 2024, 51(6A): 230700117-7. |
[12] | ZHANG Xiaoqing, WANG Qingwang, QU Xin, SHEN Shiquan, WU Changyi, LIU Ju. Direction-aware Pyramidal Aggregation Network for Road Centerline Extraction [J]. Computer Science, 2024, 51(6A): 230400101-7. |
[13] | WU Chunming, WANG Tiaojun. Study on Defect Detection Algorithm of Transmission Line in Complex Background [J]. Computer Science, 2024, 51(6A): 230500178-6. |
[14] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[15] | WU Chunming, LIU Yali. Method for Lung Nodule Detection on CT Images Using Improved YOLOv5 [J]. Computer Science, 2024, 51(6A): 230500019-6. |
|