Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230600107-8.doi: 10.11896/jsjkx.230600107
• Image Processing & Multimedia Technolog • Previous Articles Next Articles
WU Yibo, HAO Yingguang, WANG Hongyu
CLC Number:
[1]KIM M J,LIM J,KWON S W,et al.Geographical origin dis-crimination of white rice based on image pixel size using hyperspectral fluorescence imaging analysis[J].Applied Sciences,2020,10(17):5794. [2]DING C,LIU Q,LI P,et al.Distribution and quantitative analysis of phenolic compounds in fractions of Japonica andIndica rice[J].Food Chemistry,2019,274:384-391. [3]LIN Z,ZHANG X,WANG Z,et al.Metabolomic analysis ofpathways related to rice grain chalkiness by a notched-belly mutant with high occurrence of white-belly grains[J].BMC Plant Biology,2017,17:1-15. [4]HARALICK R M,STERNBERG S R,ZHUANG X.Imageanalysis using mathematical morphology[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987(4):532-550. [5]WAN Y N,LIN C M,CHIOU J F.Rice quality classification using an automatic grain quality inspection system[J].Transactions of the ASAE,2002,45(2):379. [6]PAYMAN S H,BAKHSHIPOUR A,ZAREIFOROUSH H.Development of an expert vision-based system for inspecting rice quality indices[J].Quality Assurance and Safety of Crops & Foods,2018,10(1):103-114. [7]KAUR H,SINGH B.Classification and grading rice using multi-class SVM[J].International Journal of Scientific and Research Publications,2013,3(4):1-5. [8]ZAREIFOROUSH H,MINAEI S,ALIZADEH M R,et al.A hybrid intelligent approach based on computer vision and fuzzy logic for quality measurementof milled rice[J].Measurement,2015,66:26-34. [9]CHEN S,XIONG J,GUO W,et al.Colored rice quality inspection system using machine vision[J].Journal of Cereal Science,2019,88:87-95. [10]RONNEBERGERO,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer International Publishing,2015:234-241. [11]ÇIÇEK Ö,ABDULKADIR A,IENKAMP S S,et al.3D U-Net:learning dense volumetric segmentation from sparse annotation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016:19th International Conference,Athens,Greece,October 17-21,2016,Proceedings,Part II 19.Springer International Publishing,2016:424-432. [12]XIAO X,LIAN S,LUO Z,et al.Weighted res-unet for high-quality retina vessel segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Dducation(ITME).IEEE,2018:327-331. [13]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multi modal Learning for Clinical Decision Support:4th International Workshop,DLMIA 2018,and 8th International Workshop,ML-CDS 2018,Held in Conjunction with MICCAI 2018,Granada,Spain,September 20,2018,Proceedings 4.Springer International Publishing,2018:3-11. [14]HUANG H,LIN L,TONG R,et al.Unet 3+:A full-scale connected unet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2020:1055-1059. [15]CHEN J,LU Y,YU Q,et al.Transunet:Transformers make strong encoders for medical image segmentation[J].arXiv:2102.04306,2021. [16]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [17]SCHLEMPER J,OKTAY O,SCHAAP M,et al.Attention gated networks:Learning to leverage salient regions in medical images[J].Medical Image Analysis,2019,53:197-207. [18]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [19]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [20]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part I 16.Springer International Publishing,2020:213-229. [21]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [22]TOUVRON H,CORD M,DOUZE M,et al.Training data-effi-cient image transformers & distillation through attention[C]//International Conference on Machine Learning.PMLR,2021:10347-10357. [23]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [24]VALANARASU J M J,OZA P,HACIHALILOGLU I,et al.Medical transformer:Gated axial-attention for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021:24th International Confe-rence,Strasbourg,France,September 27-October 1,2021,Proceedings,Part I 24.Springer International Publishing,2021:36-46. [25]CAO H,WANG Y,CHEN J,et al.Swin-unet:Unet-like puretransformer for medical image segmentation[C]//Computer Vision-ECCV 2022 Workshops:Tel Aviv,Israel,October 23-27,2022,Proceedings,Part III.Cham:Springer Nature Switzerland,2023:205-218. [26]JHA D,RIEGLER M A,JOHANSEN D,et al.Doubleu-net:A deep convolutional neural network for medical image segmentation[C]//2020 IEEE 33rd International Symposium on Compu-ter-based Medical Systems(CBMS).IEEE,2020:558-564. [27]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [28]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [29]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinkingatrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [30]WEI J,WANG S,HUANG Q.F3Net:fusion,feedback and focus for salient object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12321-12328. |
[1] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[2] | HOU Linhao, LIU Fan. Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks [J]. Computer Science, 2024, 51(6A): 230400110-6. |
[3] | HUANG Yuanhang, BIAN Shan, WANG Chuntao. Gaussian Enhancement Module for Reinforcing High-frequency Details in Camera ModelIdentification [J]. Computer Science, 2024, 51(6A): 230700125-5. |
[4] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[5] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[6] | YUAN Zhen, LIU Jinfeng. Denoising Autoencoders Based on Lossy Compress Coding [J]. Computer Science, 2024, 51(6A): 230400172-7. |
[7] | ZHANG Xiaoqing, WANG Qingwang, QU Xin, SHEN Shiquan, WU Changyi, LIU Ju. Direction-aware Pyramidal Aggregation Network for Road Centerline Extraction [J]. Computer Science, 2024, 51(6A): 230400101-7. |
[8] | LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container Lock Hole Recognition Algorithm Based on Lightweight YOLOv5s [J]. Computer Science, 2024, 51(6A): 230900021-6. |
[9] | DAI Yongdong, JIN Yang, DAI Yufan, FU Jing, WANG Maofei, LIU Xi. Study on Intelligent Defect Recognition Algorithm of Aerial Insulator Image [J]. Computer Science, 2024, 51(6A): 230700172-5. |
[10] | HUANG Haixin, WU Di. Steel Defect Detection Based on Improved YOLOv7 [J]. Computer Science, 2024, 51(6A): 230800018-5. |
[11] | HUANG Rui, XU Ji. Text Classification Based on Invariant Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230900018-5. |
[12] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
[13] | LIANG Fang, XU Xuyao, ZHAO Kailong, ZHAO Xuanfeng, ZHANG Guijun. Remote Template Detection Algorithm and Its Application in Protein Structure Prediction [J]. Computer Science, 2024, 51(6A): 230600225-7. |
[14] | WEI Niannian, HAN Shuguang. New Solution for Traveling Salesman Problem Based on Graph Convolution and AttentionNeural Network [J]. Computer Science, 2024, 51(6A): 230700222-8. |
[15] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
|