Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230600039-6.doi: 10.11896/jsjkx.230600039
• Image Processing & Multimedia Technolog • Previous Articles Next Articles
SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen
CLC Number:
[1]ZHANG L,WU X.An edge-guided image interpolation algorithm via directional filtering and data fusion[J].IEEE Transactions on Image Processing,2006,15(8):2226-2238. [2]ZHANG K,GAO X,TAO D,et al.Single image super-resolution with non-local means and steering kernel regression[J].IEEE Transactions on Image Processing,2012,21(11):4544-4556. [3]DONG C,LOY C C,HE K,et al.Learning a deep convolutional network for image super-resolution[C]//Computer Vision-ECCV 2014:13th European Conference.2014:184-199. [4]KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1646-1654. [5]LEDIG C,THEIS L,HUSZÁR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4681-4690. [6]LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2017:136-144. [7]ZHANG Y,LI K,LI K,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:286-301. [8]SHI W,CABALLERO J,HUSZÁR F,et al.Real-time single im-age and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1874-1883. [9]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [10]DAI T,CAI J,ZHANG Y,et al.Second-order Attention Network for Single Image Super-Resolution[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2019. [11]NIU B,WEN W,REN W,et al.Single image super-resolution via a holistic attention network[C]//Computer Vision-ECCV 2020:16th European Conference.2020:191-207. [12]LAI W S,HUANG J B,AHUJA N,et al.Deep laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:624-632. [13]DONG C,LOY C C,HE K,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(2):295-307. [14]JOHNSON J,ALAHI A,FEI-FEI L.Perceptual losses for real-time style transfer and super-resolution[C]//Computer Vision-ECCV 2016:14th European Conference.2016:694-711. [15]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative Adversarial Nets[J].arXiv:1406.2661,2014. [16]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [17]ZHANG Y,TIAN Y,KONG Y,et al.Residual dense networkfor image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2472-2481. [18]LI J,FANG F,MEI K,et al.Multi-scale residual network forimage super-resolution[C]// Proceedings of the European Conference on Computer Vision(ECCV).2018:517-532. [19]LIU J,ZHANG W,TANG Y,et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2359-2368. [20]WANG X,YU K,WU S,et al.Esrgan:Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops.2018. [21]LIU J,TANG J,WU G.Residual feature distillation network for lightweight image super-resolution[C]//Computer Vision-ECCV 2020 Workshops.2020:41-55. [22]AGUSTSSON E,TIMOFTE R.NTIRE 2017 Challenge on Single Image Super-Resolution:Dataset and Study[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2017. [23]HARIS M,SHAKHNAROVICH G,UKITA N.Deep back-projection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1664-1673. [24]YANG X,ZHU Y,GUO Y,et al.An image super-resolutionnetwork based on multi-scale convolution fusion[J].The Visual Computer,2022,38(12):4307-4317. [25]HAO F,ZHANG T,ZHAO L,et al.Efficient residual attention network for single image super-resolution[J].Applied Intelligence,2022,52(1):652-661. [26]LIU Z X,ZHU C J,HUANG J,et al.lmage Super-resolution by Residual Attention Network with Multi-skip Connection[J].Chinese Journal of Computers,2021,48(11):258-267. [27]GUO L,LI C,CHEN C,et al.Image Super-Resolution Recon-struction Using Recursive Residual Network Based onChannel Attention[J].Chinese Journal of Computers,2021,48(8):139-144. [28]LIU Z X,ZHU C J,HUANG J et al.lmage Super-resolution by Residual Attention Network with Multi-skip Connection[J].Chinese Journal of Computers,2021,48(11):258-267. |
[1] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[2] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[3] | HOU Linhao, LIU Fan. Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks [J]. Computer Science, 2024, 51(6A): 230400110-6. |
[4] | HUANG Yuanhang, BIAN Shan, WANG Chuntao. Gaussian Enhancement Module for Reinforcing High-frequency Details in Camera ModelIdentification [J]. Computer Science, 2024, 51(6A): 230700125-5. |
[5] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[6] | LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container Lock Hole Recognition Algorithm Based on Lightweight YOLOv5s [J]. Computer Science, 2024, 51(6A): 230900021-6. |
[7] | HUANG Haixin, WU Di. Steel Defect Detection Based on Improved YOLOv7 [J]. Computer Science, 2024, 51(6A): 230800018-5. |
[8] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
[9] | MENG Xiangfu, REN Quanying, YANG Dongshen, LI Keqian, YAO Keyu, ZHU Yan. Literature Classification of Individual Reports of Adverse Drug Reactions Based on BERT and CNN [J]. Computer Science, 2024, 51(6A): 230400049-6. |
[10] | JIAO Ruodan, GAO Donghui, HUANG Yanhua, LIU Shuo, DUAN Xuanfei, WANG Rui, LIU Weidong. Study and Verification on Few-shot Evaluation Methods for AI-based Quality Inspection in Production Lines [J]. Computer Science, 2024, 51(6A): 230700086-8. |
[11] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[12] | YANG Xiuzhang, WU Shuai, REN Tianshu, LIAO Wenjing, XIANG Meiyu, YU Xiaomin, LIU Jianyi, CHEN Dengjian. Complex Environment License Plate Recognition Algorithm Based on Improved Image Enhancement and CNN [J]. Computer Science, 2024, 51(6A): 220200162-7. |
[13] | SONG Zhen, WANG Jiqiang, HOU Moyu, ZHAO Lin. Conveyor Belt Defect Detection Network Combining Attention Mechanism with Line Laser Assistance [J]. Computer Science, 2024, 51(6A): 230800115-6. |
[14] | WU Chunming, LIU Yali. Method for Lung Nodule Detection on CT Images Using Improved YOLOv5 [J]. Computer Science, 2024, 51(6A): 230500019-6. |
[15] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
|