Computer Science ›› 2024, Vol. 51 ›› Issue (10): 276-286.doi: 10.11896/jsjkx.231000167
• Computer Graphics & Multimedia • Previous Articles Next Articles
DING Weilong, LIU Jinlong, ZHU Wei, LIAO Wanyin
CLC Number:
[1]PAN X,LIN X,CAO D,et al.Deep learning for drug repurpo-sing:Methods,databases,and applications[J].Wiley Online Library,2022,12(4):1597-1618. [2]WEI D H,STEVEN S,LOUIS R,et al.From telemedicine to internet+artificial intelligence(AI) healthcare to see the evolution of healthcare digitization[J].Chinese Research Hospital,2022,9(5):64-76. [3]SUNG H,FERLAY J,SIEGEL R,et al.Global cancer statistics 2020:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:A Cancer Journal for Clinicians,2021,71(3):209-249. [4]KOMURA D,ISHIKAWA S.Machine learning methods for his-topathological image analysis[J].Computational and Structural Biotechnology Journal,2018,16(1):34-42. [5]JIN X,WEN K,LYU G F,et al.Survey on the applications of deep learning in histopathology[J].Journal of Image and Gra-phics,2020,25(10):1982-1993. [6]SONG J,XIAO L,LIAN Z C,et al.Deep learning algorithms for image segmentation in digital pathology:overview and prospect[J].Journal of Software,2021,32(5):1427-1460. [7]QU L H,LIU S Y,LIU X Y,et al.Towards label-efficient automatic diagnosis and analysis:a comprehensive survey of advanced deep learning-based weakly-supervised,semi-supervised and self-supervised techniques in histopathological image analysis[J].Physics in Medicine & Biology,2022,67(20):1-34. [8]ZHU X L,LUO X L,WU H M,et al.Quality control for pathological specimen processing[J].Journal of Clinical and Patholo-gical Research,2019,35(10):1249-1250. [9]KANWAL N,PÉREZ-BUENO F,SCHMIDT A,et al.The devil is in the details:whole slide image acquisition and processing for artifacts detection,color variation,and data augmentation:a review[J].IEEE Access,2022,10(1):58821-58844. [10]MALEKI D,AFSHARI M,BABAIE M,et al.Ink marker segmentation in histopathology images using deep learning[C]//Advances in Visual Computing:15th International Symposium.Springer International Publishing,2020:359-368. [11]SHAKARAMI A,NICOLÈ L,TERRERAN M,et al.TCNN:a transformer convolutional neural network for artifact classification in whole slide images[J].Biomedical Signal Processing and Control,2023,84(1):104812. [12]JANOWCZYK A,ZUO R,GILMORE H,et al.HistoQC:an open-source quality control tool for digital pathology slides[J].JCO Clinical Cancer Informatics,2019,3(1):1-7. [13]HOSSEINI M S,ZHANG Y Y,PLATANIOTIS K N.Encoding visual sensitivity by maxpol convolution filters for image sharpness assessment[J].IEEE Transactions on Image Processing,2019,28(9):4510-4525. [14]SENARAS C,NIAZI M K K,LOZANSKI G.DeepFocus:detection of out-of-focus regions in whole slide digital images using deep learning[J].PLoS One,2018,13(10):1-13. [15]WANG Z,HOSSEINI M S,MILES A,et al.FocusLiteNN:high efficiency focus quality assessment for digital pathology[C]//Medical Image Computing and Computer Assisted Intervention.Springer,2020,12265:403-413. [16]JIANG S,LIAO J,BIAN Z,et al.Transform-and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging[J].Biomedical Optics Express,2018,9(4):1601-1612. [17]HOMEYER,A,GEIBLER C,SCHWEN L O,et al.Recommendations on compiling test datasets for evaluating artificial intelligence solutions in pathology[J].Modern Pathology,2022,35(1):1759-1769. [18]CAMPANELLA G,HANNA M G,GENESLAW L,et al.Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J].Nature Medicine,2019,25(8):1301-1309. [19]MOBADERSANY P,YOUSEFI S,AMGAD M,et al.Predicting cancer outcomes from histology and genomics using convolu-tional networks[J].Biological Sciences,2018,115(13):e2970-e2979. [20]CHEN R J,LU M Y,WANG J W,et al.Pathomic fusion:an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis[J].IEEE Transactions on Medical Imaging,2022,41(4):757-770. [21]DIMITRIOU N,ARANDJELOVIC,CAIE P D.Deep learningfor whole slide image analysis:an overview[J].Frontiers in Medicine,2019,6(1):1-7. [22]KALRA S,TIZHOOSH H R,CHOI C,et al.Yottixel-animage search engine for large archives of histopathology whole slide images[J].Medical Image Analysis,2020,65(1):1-12. [23]ADNAN M,KALRA S,TIZHOOSH H R.Representationlearning of histopathology images using graph neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.IEEE,2020:4254-4261. [24]SUVARNA K S,LAYTON C,BANCROFT J D.Bancroft'stheory and practice of histological techniques[M].Elsevier Health Sciences,2018. [25]ZHENG X,WANG R,ZHANG X K,et al.A deep learning modeland human-machine fusion for prediction of EBV-associated gastric cancer from histopathology[J].Nature Communications,2022,13(1):1-12. [26]RETAMERO J A,ANERIOS F J,RAIMUNDO G D M.Complete digital pathology for routine histopathology diagnosis in a multicenter hospital network[J].Arch Pathol Lab Med,2020,144(2):221-228. [27]SRINIDHI C L,CIGA O,MARTEL A L.Deep neural network models for computational histopathology:A survey[J].Medical Image Analysis,2021,67(1):1-26. [28]BEL T D,BOKHORST J M,LAAK J,et al.Residual CycleGAN for robust domain transformation of histopathological tissue slides[J].Medical Image Analysis,2021,70(2):1-12. [29]BÁNDI P,LOO R,INTEZAR M,et al.Comparison of different methods for tissue segmentation in histopathological whole-slide images[C]//IEEE 14th International Symposium on Biomedical Imaging.IEEE,2017:591-595. [30]LUO S H,LIU Z M,YANG B W,et al.Advances in staining processing of histological pathology images in deep learning[J].Acta Laser Biology Sinica,2022,31(6):481-487. [31]TELLEZ D,LITJENS G,BÁNDI P,et al.Quantifying theeffects of data augmentation andstain color normalization in convolutional neural networks for computational pathology[J].Medical Image Analysis,2019,58(1):1-9. [32]LIU Y,GADEPALLI K,NOROUZI M,et al.Detecting cancer metastases on gigapixel pathology images[EB/OL].[2023-94-13].https://arxiv.org/pdf/1703.02442.pdf. [33]ABADI M,AGARWAL A,BARHAM P,et al.Tensorflow:large-scale machine learning on heterogeneous distributed systems[EB/OL].[2023-04-15].https://arxiv.org/pdf/1603.04467.pdf. [34]TELLEZ D,BALKENHOL M,OTTE-HOLLER I,et al.Whole-slide mitosis detection in h&e breast histology using phh3 as a reference to train distilled stain-invariant convolu-tional networks[J].IEEE Transactions on Medical Imaging,2018,37(9):2126-2136. [35]WAGNER S J,KHALILI N,SHARMA R,et al.Structure-preserving multi-domain stain color augmentation using style-transfer with disentangled representations[C]//Medical Image Computing and Computer Assisted Intervention 24th International Conference.Springer International Publishing,2021:257-266. [36]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2014,63(11):139-144. [37]BUG D,STEFFEN S,GROTE A,et al.Context-based normalization of histological stains using deep convolutional features[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:Third International Workshop,DLMIA 2017,and 7th International Workshop,ML-CDS 2017.Springer International Publishing,2017:135-142. [38]GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifierneural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics Workshop and Conference Proceedings.2011:315-323. [39]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2023-04-25].https://arxiv.org/abs/1409.1556v1. [40]ZANJANI F G,ZINGER S,BEJNORDI B E,et al.Histopatho-logy stain-color normalization using deep generative models[C]//Medical Imaging with Deep Learning.2018:1-11. [41]KINGMA D P,WELLING M.Auto-encoding variational bayes[EB/OL].[2023-03-29].https://arxiv.org/pdf/1312.6114.pdf. [42]JANOWCZYK A,BASAVANHALLY A,MADABHUSHI A.Stain Normalization using Sparse AutoEncoders(StaNoSA):Application to digital pathology[J].Computerized Medical Imaging and Graphics,2016,57(1):50-61. [43]SHABAN M,CHRISTOPH B,NASSIR N.Staingan:stain style transfer for digital histological images[C]//IEEE 16th International Symposium on Biomedical Imaging.IEEE,2019:953-956. [44]ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2017:2223-2232. [45]CONG C,LIU S,IEVA A D,et al.Colouradaptive generative networks for stain normalisation of histopathology images[J].Medical Image Analysis,2022,82(1):102580. [46]SALEHI P,CHALECHALE A.Pix2pix-based stain-to-staintranslation:a solution for robust stain normalization in histopathology images analysis[C]//International Conference on Machine Vision and Image Processing.2020:1-7. [47]RONNEBERGER O,FISCHER P,BROX T.U-net:convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference.Springer International Publishing,2015:234-241. [48]ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Confe-rence on Computer Vision and Pattern Recognition.IEEE,2017:5967-5976. [49]BENTAIEB A,HAMARNEH G.Adversarial stain transfer for histopathology image analysis[J].IEEE Transactions on Medical Imaging,2018,37(3):792-802. [50]GATYS L A,ECKER A S,BETHG E.Image style transferusing convolutional neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:2414-2423. [51]HOSSEINI M S,ZHANG Y Y,CHANG L D,et al.Focus quality assessment of high-throughput whole slide imaging in digital pathology[J].IEEE Transaction on Medical Imaging,2018,39(1):62-74. [52]LI Q,LIU X M,HAN K,et al.Learning to autofocus in whole slide imaging via physics-guided deep cascade networks[J].Optics Express,2022,30(9):14319-14340. [53]DASTIDAR T R.Automated focus distance estimation for digi-tal microscopy using deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.IEEE,2019:1049-1056. [54]DENG Y,FENG M,JIANG Y,et al.Development of pathological super-resolution images using artificial intelligence based on whole slide image[J].MedComm,2020,1(3):410-417. [55]KOTHARI S,PHAN J H,WANG M D.Eliminating tissue-fold artifacts in histopathological whole-slide images for improved image-based prediction of cancer grade[J].Journal Pathology Informatics,2013,4(1)1-11. [56]PALOKANGAS S,SELINUMMI J,YLI-HARJA O.Segmentation of folds in tissue section images[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society.IEEE,2007:5642-5645. [57]BABAIE M,TIZHOOSH H R.Deep features for tissue-fold detection in histopathology images[C]//Digital Pathology:15th European Congress.Springer International Publishing,2019:125-132. [58]CORTES C,VAPNI K.Support-vector networks[J].Machine Learning,1995,20(1):273-297. [59]HEMMATIRAD K,BABAIE M,AFSHARI M,et al.Qualitycontrol of whole slide images using the yolo concept[C]//2022 IEEE 10th International Conference on Healthcare Informatics.IEEE,2000:282-287. [60]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[EB/OL].[2023-04-23].https://arxiv.org/pdf/2004.10934.pdf. [61]SMIT G,CIOMPI F,CIGÉHN M,et al.Quality control ofwhole-slide images through multi-class semantic segmentation of artifacts[C]//Medical Imaging with Deep Learning.2021:1-3. [62]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision.Springer,2018:801-818. [63]TAN M,LE Q.Efficientnet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning.2019:6105-6114. [64]HOSSAIN M S,SHAHRIAR G M,SYEED M M M,et al.Tissue artifact segmentation and severity assessment for automatic analysis using wsi[J].IEEE Access,2023,11(1):21977-21991. [65]JHA D,RIEGLER M,JOHANSEN D,et al.DoubleU-Net:adeep convolutional neural network for medical image segmentation[C]//IEEE 33rd International Symposium on Computer-Based Medical Systems.IEEE,2020:558-564. [66]SHAIKH N N,WASAG K,NIE Y.Artifact identification indigital histopathology images using few-shot learning[C]//IEEE 19th International Symposium on Biomedical Imaging.IEEE,2022:1-4. [67]FOUCART A,DEBEIR O,DECAESTECKER C.Artifact identification in digital pathology fromweak and noisy supervision with deep residual networks[C]//4th International Conference on Cloud Computing Technologies and Applications Brussels.Belgium,2018:1-6. [68]TIAN X C,TANG H J.Software collection of the optical mea-suring len's distortion in the CCD-assembly scanner[J].Optics and Precision Engineering,2001,9(3):234-237. [69]XU W,GU S,CHU C Z,et al.Real-time correction of imagedrift in scanning electron microscope[J].Opto-Electronic Engineering,2018,45(12):40-47. [70]LIANG M Y,ZHANG Q N.Pathological image reconstruction based on deep transfer learning[J].Journal of Shanxi University(Nat.Sci.Ed),2022,45(6):1504-1512. [71]BROCK A,DONAHUE J,SIMONYAN K.Large scale gantraining for high fidelity natural image synthesis[C]//7th International Conference on Learning Representations.ICLR,2019:1-35. [72]喻罡,高燕华,孙凯.基于稀疏采样的病理切片多分辨率图像重建方法及系统:中国CN115908283A[P].2023.04.04. [73]LIANG M Y,ZHANG Y,LIANG J N,et al.Pathological Image Super-resolution Reconstruction Based on Sparse Coding Non-local AttentionDual Network[J].Computer Science,2023,50(S1):220700016-8. [74]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:770-778. [75]ALI S,ALHAM N K,VERRILL C,et al.Ink removal from histopathology whole slide images by combining classification,detection and image generation models[C]//IEEE 16th International Symposium on Biomedical Imaging.IEEE,2019:928-932. [76]VENKATESH B,SHAHT T,CHEN A,et al.Restoration of marker occluded hematoxylin and eosin stained whole slide histology images using generative adversarial networks[C]//IEEE 17th International Symposium on Biomedical Imaging.IEEE,2020:591-595. [77]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2015,17(1):2096-2030. [78]WU Y Z,KANG Y,LUO J H,et al.FedCG:leverage conditional gan for protecting privacy and maintaining competitive perfor-mance in federated learning[EB/OL].[2023-04-16].https://arXiv.org/abs/2111.08211. [79]MITTAL A,MOORTHY A K,BOVIK A C.No-referenceimage quality assessment in the spatial domain[J].IEEE Transactions on Image Processing,2012,21(12):4695-4708. [80]SCHÖMIG-MARKIEFKA B,PRYALUKHIN A,HULLA W,et al.Quality control stress test for deep learning-based diagnostic model in digital pathology[J].Modern Pathology,2021,34(1):2098-2108. |
[1] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[2] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[3] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[4] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[5] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[6] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[7] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[8] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[9] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[10] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[11] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[12] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
[13] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[14] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[15] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
|