Computer Science ›› 2025, Vol. 52 ›› Issue (3): 400-406.doi: 10.11896/jsjkx.231200074
• Information Security • Previous Articles
HUO Xingpeng, SHA Letian, LIU Jianwen, WU Shang, SU Ziyue
CLC Number:
[1]IBM Documentation[EB/OL].(2023-03-15)[2023-05-28].https://www.ibm.com/docs/en/informix-servers/14.10?topic=architecture-windows-network-domain. [2]ENGEBRETSON P.The Basics of Hacking and PenetrationTesting:Ethical Hacking and Penetration Testing Made Easy[M].Elsevier,2013:1-14. [3]BAILLIE C,STANDEN M,SCHWARTZ J,et al.CybORG:An Autonomous Cyber Operations Research Gym[J].arXiv:2002.10667,2020. [4]LI L,FAYAD R,TAYLOR A.CyGIL:A Cyber Gym for Trai-ning Autonomous Agents over Emulated Network Systems[J].arXiv:2109.03331,2021. [5]BROCKMAN G,CHEUNG V,PETTERSSON L,et al.Openai gym[J].arXiv:1606.01540,2016. [6]SCHWARTZ J,KURNIAWATTI H.NASim:Network AttackSimulator[Z/OL].https://networkattacksimulator.readthedocs.io/.2019. [7]SCHWARTZ J,KURNIAWATI H.Autonomous penetrationtesting using reinforcement learning[J].arXiv:1905.05965,2019. [8]MAEDA R,MIMURA M.Automating post-exploitation withdeep reinforcement learning[J].Computers & Security,2021,100:102108. [9]ZHOU S C,LIU J J,ZHONG X F,et al.Intelligent Penetration Testing Path Discovery Based on Deep Reinforcement Learning[J].Computer Science,2021,48(7):40-46. [10]ZHOU S,LIU J,HOU D,et al.Autonomous Penetration Testing Based on Improved Deep Q-Network[J].Applied Sciences,2021,11(19):8823. [11]ZENG Q W,ZHANG G M,XING C Y,et al.Intelligent Attack Path Discovery Based on Hierarchical Reinforcement Learning[J].Computer Science,2023,50(7):308-316. [12]BELLMAN R.A Markovian Decision Process[J].Indiana University Mathematics Journal,1957,6(4):679-684. [13]BELLMAN R.Dynamic programming[J].Science,AmericanAssociation for the Advancement of Science,1966,153(3731):34-37. [14]FRANÇOIS-LAVET V,HENDERSON P,ISLAM R,et al.An Introduction to Deep Reinforcement Learning[J].Foundations and Trends© in Machine Learning,2018,11(3/4):219-354. [15]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing atari with deep reinforcement learning[J].arXiv:1312.5602,2013. [16]HASSELT H V,GUEZ A,SILVER D.Deep ReinforcementLearning with Double Q-Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016:2094-2100. [17]WANG Z,SCHAUL T,HESSEL M,et al.Dueling Network Architectures for Deep Reinforcement Learning[C]//Proceedings of The 33rd International Conference on Machine Learning.PMLR,2016:1995-2003. [18]FORTUNATO M,AZAR M G,PIOT B,et al.Noisy networks for exploration[J].arXiv:1706.10295,2017. [19]NVD-CVSS v3 Calculator[EB/OL].[2023-04-27].https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator. [20]Archiveddocs.Active Directory Structure and Storage Technologies:Active Directory[EB/OL].(2014-11-19)[2023-04-25].https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759186(v=ws.10). |
[1] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[2] | DU Likuan, LIU Chen, WANG Junlu, SONG Baoyan. Self-learning Star Chain Space Adaptive Allocation Method [J]. Computer Science, 2025, 52(3): 359-365. |
[3] | XU Donghong, LI Bin, QI Yong. Task Scheduling Strategy Based on Improved A2C Algorithm for Cloud Data Center [J]. Computer Science, 2025, 52(2): 310-322. |
[4] | WANG Tianjiu, LIU Quan, WU Lan. Offline Reinforcement Learning Algorithm for Conservative Q-learning Based on Uncertainty Weight [J]. Computer Science, 2024, 51(9): 265-272. |
[5] | ZHOU Wenhui, PENG Qinghua, XIE Lei. Study on Adaptive Cloud-Edge Collaborative Scheduling Methods for Multi-object State Perception [J]. Computer Science, 2024, 51(9): 319-330. |
[6] | LI Danyang, WU Liangji, LIU Hui, JIANG Jingqing. Deep Reinforcement Learning Based Thermal Awareness Energy Consumption OptimizationMethod for Data Centers [J]. Computer Science, 2024, 51(6A): 230500109-8. |
[7] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[8] | WANG Shuanqi, ZHAO Jianxin, LIU Chi, WU Wei, LIU Zhao. Fuzz Testing Method of Binary Code Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(6A): 230800078-7. |
[9] | YANG Xiuwen, CUI Yunhe, QIAN Qing, GUO Chun, SHEN Guowei. COURIER:Edge Computing Task Scheduling and Offloading Method Based on Non-preemptivePriorities Queuing and Prioritized Experience Replay DRL [J]. Computer Science, 2024, 51(5): 293-305. |
[10] | LI Junwei, LIU Quan, XU Yapeng. Option-Critic Algorithm Based on Mutual Information Optimization [J]. Computer Science, 2024, 51(2): 252-258. |
[11] | SHI Dianxi, PENG Yingxuan, YANG Huanhuan, OUYANG Qianying, ZHANG Yuhui, HAO Feng. DQN-based Multi-agent Motion Planning Method with Deep Reinforcement Learning [J]. Computer Science, 2024, 51(2): 268-277. |
[12] | ZHAO Xiaoyan, ZHAO Bin, ZHANG Junna, YUAN Peiyan. Study on Cache-oriented Dynamic Collaborative Task Migration Technology [J]. Computer Science, 2024, 51(2): 300-310. |
[13] | WANG Kewen, ZHANG Weiting, LIAO Peixi. Deterministic Transmission Scheduling Mechanism for Mixed Traffic Flows Towards Digital Twin Networks [J]. Computer Science, 2024, 51(12): 37-45. |
[14] | GU Zhaojun, YANG Wen, SUI He, LI Zhiping. Threat Assessment of Air Traffic Control Information System Based on Knowledge Graph [J]. Computer Science, 2024, 51(11A): 240200052-11. |
[15] | LU Yue, WANG Qiong, LIU Shun, LI Qingtao, LIU Yang, WANG Hongbiao. Reinforcement Learning Algorithm for Charging/Discharging Control of Electric Vehicles Considering Battery Loss [J]. Computer Science, 2024, 51(11A): 231200147-7. |
|