Computer Science ›› 2025, Vol. 52 ›› Issue (3): 400-406.doi: 10.11896/jsjkx.231200074
• Information Security • Previous Articles
HUO Xingpeng, SHA Letian, LIU Jianwen, WU Shang, SU Ziyue
CLC Number:
| [1]IBM Documentation[EB/OL].(2023-03-15)[2023-05-28].https://www.ibm.com/docs/en/informix-servers/14.10?topic=architecture-windows-network-domain. [2]ENGEBRETSON P.The Basics of Hacking and PenetrationTesting:Ethical Hacking and Penetration Testing Made Easy[M].Elsevier,2013:1-14. [3]BAILLIE C,STANDEN M,SCHWARTZ J,et al.CybORG:An Autonomous Cyber Operations Research Gym[J].arXiv:2002.10667,2020. [4]LI L,FAYAD R,TAYLOR A.CyGIL:A Cyber Gym for Trai-ning Autonomous Agents over Emulated Network Systems[J].arXiv:2109.03331,2021. [5]BROCKMAN G,CHEUNG V,PETTERSSON L,et al.Openai gym[J].arXiv:1606.01540,2016. [6]SCHWARTZ J,KURNIAWATTI H.NASim:Network AttackSimulator[Z/OL].https://networkattacksimulator.readthedocs.io/.2019. [7]SCHWARTZ J,KURNIAWATI H.Autonomous penetrationtesting using reinforcement learning[J].arXiv:1905.05965,2019. [8]MAEDA R,MIMURA M.Automating post-exploitation withdeep reinforcement learning[J].Computers & Security,2021,100:102108. [9]ZHOU S C,LIU J J,ZHONG X F,et al.Intelligent Penetration Testing Path Discovery Based on Deep Reinforcement Learning[J].Computer Science,2021,48(7):40-46. [10]ZHOU S,LIU J,HOU D,et al.Autonomous Penetration Testing Based on Improved Deep Q-Network[J].Applied Sciences,2021,11(19):8823. [11]ZENG Q W,ZHANG G M,XING C Y,et al.Intelligent Attack Path Discovery Based on Hierarchical Reinforcement Learning[J].Computer Science,2023,50(7):308-316. [12]BELLMAN R.A Markovian Decision Process[J].Indiana University Mathematics Journal,1957,6(4):679-684. [13]BELLMAN R.Dynamic programming[J].Science,AmericanAssociation for the Advancement of Science,1966,153(3731):34-37. [14]FRANÇOIS-LAVET V,HENDERSON P,ISLAM R,et al.An Introduction to Deep Reinforcement Learning[J].Foundations and Trends© in Machine Learning,2018,11(3/4):219-354. [15]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing atari with deep reinforcement learning[J].arXiv:1312.5602,2013. [16]HASSELT H V,GUEZ A,SILVER D.Deep ReinforcementLearning with Double Q-Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016:2094-2100. [17]WANG Z,SCHAUL T,HESSEL M,et al.Dueling Network Architectures for Deep Reinforcement Learning[C]//Proceedings of The 33rd International Conference on Machine Learning.PMLR,2016:1995-2003. [18]FORTUNATO M,AZAR M G,PIOT B,et al.Noisy networks for exploration[J].arXiv:1706.10295,2017. [19]NVD-CVSS v3 Calculator[EB/OL].[2023-04-27].https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator. [20]Archiveddocs.Active Directory Structure and Storage Technologies:Active Directory[EB/OL].(2014-11-19)[2023-04-25].https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759186(v=ws.10). |
| [1] | WANG Haoyan, LI Chongshou, LI Tianrui. Reinforcement Learning Method for Solving Flexible Job Shop Scheduling Problem Based onDouble Layer Attention Network [J]. Computer Science, 2026, 53(1): 231-240. |
| [2] | CHEN Jintao, LIN Bing, LIN Song, CHEN Jing, CHEN Xing. Dynamic Pricing and Energy Scheduling Strategy for Photovoltaic Storage Charging Stations Based on Multi-agent Deep Reinforcement Learning [J]. Computer Science, 2025, 52(9): 337-345. |
| [3] | ZHANG Yongliang, LI Ziwen, XU Jiahao, JIANG Yuchen, CUI Ying. Congestion-aware and Cached Communication for Multi-agent Pathfinding [J]. Computer Science, 2025, 52(8): 317-325. |
| [4] | HUO Dan, YU Fuping, SHEN Di, HAN Xueyan. Research on Multi-machine Conflict Resolution Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(7): 271-278. |
| [5] | WU Zongming, CAO Jijun, TANG Qiang. Online Parallel SDN Routing Optimization Algorithm Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240900018-9. |
| [6] | ZHAO Xuejian, YE Hao, LI Hao, SUN Zhixin. Multi-AGV Path Planning Algorithm Based on Improved DDPG [J]. Computer Science, 2025, 52(6): 306-315. |
| [7] | WANG Chenyuan, ZHANG Yanmei, YUAN Guan. Class Integration Test Order Generation Approach Fused with Deep Reinforcement Learning andGraph Convolutional Neural Network [J]. Computer Science, 2025, 52(6): 58-65. |
| [8] | LI Yuanbo, HU Hongchao, YANG Xiaohan, GUO Wei, LIU Wenyan. Intrusion Tolerance Scheduling Algorithm for Microservice Workflow Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(5): 375-383. |
| [9] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
| [10] | DU Likuan, LIU Chen, WANG Junlu, SONG Baoyan. Self-learning Star Chain Space Adaptive Allocation Method [J]. Computer Science, 2025, 52(3): 359-365. |
| [11] | XU Donghong, LI Bin, QI Yong. Task Scheduling Strategy Based on Improved A2C Algorithm for Cloud Data Center [J]. Computer Science, 2025, 52(2): 310-322. |
| [12] | SHI Junnan, CHEN Zemao, ZHANG Liqiang. Automatic Attack Path Discovery Method for Substation Remote Monitoring Network [J]. Computer Science, 2025, 52(12): 339-350. |
| [13] | PENG Junlong, FAN Jing. Hybrid Reinforcement Learning Algorithm Combined with 2-opt for Solving Traveling Salesman Problem [J]. Computer Science, 2025, 52(11A): 250200121-8. |
| [14] | XIA Weihao, WANG Jinlong. Research on Multi-agent Joint Navigation Strategy Based on Improved Deep ReinforcementLearning [J]. Computer Science, 2025, 52(11A): 250200095-7. |
| [15] | WEI Debin, ZHANG Yi, XU Pingduo, WANG Xinrui. Multipath Routing Algorithm for Satellite Networks Based on Convolutional Twin Delay Deep Deterministic Policy Gradient [J]. Computer Science, 2025, 52(11): 280-288. |
|
||