Computer Science ›› 2025, Vol. 52 ›› Issue (3): 359-365.doi: 10.11896/jsjkx.240700140
• Computer Network • Previous Articles Next Articles
DU Likuan, LIU Chen, WANG Junlu, SONG Baoyan
CLC Number:
[1]LI X,DONG X,XU X,et al.A Blockchain-Based Scheme for Efficient Medical Data Sharing with Attribute-Based Hierarchical Encryption[C]//WISA.Cham:Springer International Publi-shing,2022:661-673. [2]WEI W,ZHOU Y,LI D,et al.BEAIV:Blockchain Empowered Accountable Integrity Verification Scheme for Cross-Chain Data[C]//Web Information Systems and Applications.Singapore:Springer Nature Singapore,2023:488-500. [3]LI X H,LI C,ZHANG G G,et al.A Survey on the Integration of Blockchain and Database Technology [J].Computer Science and Exploration,2023,17(4):761-770. [4]WU Y,WANG Z,MA Y,et al.Deep reinforcement learning for blockchain in industrial IoT:A survey[J].Computer Networks,2021,191:108004. [5]HUANG H W,KONG W,PENG X W,et al.Survey on block-chain sharding technology [J].Computer Engineering,2022,48(6):1-10. [6]LIU X,XIE H,YAN Z,et al.A survey on blockchain sharding[J].ISA Transactions,2023,141:30-43. [7]WANG J,MA J W,LUO J X.A Blockchain Sharding Schemefor Edge Computing [J].Journal of Internet of Things,2023(7):88-100. [8]JIA L,LIU Y,WANG K,et al.Estuary:A Low Cross-Shard Blockchain Sharding Protocol Based on State Splitting[J].IEEE Transactions on Parallel and Distributed Systems,2024,35(3):405-420. [9]ZHANG J,CHEN W,HONG Z,et al.Efficient Execution of Arbitrarily Complex Cross-Shard Contracts for Blockchain Sharding[J].IEEE Transactions on Computers,2024,73(5):1190-1205. [10]XU Y,SHAO J,SLAATS T,et al.MWPoW+:A Strong Consensus Protocol for Intra-Shard Consensus in Blockchain Sharding[J].ACM Transactions on Internet Technology,2023,23(2):34:1-34:27. [11]LI M,LIN Y,ZHANG J,et al.CoChain:High ConcurrencyBlockchain Sharding via Consensus on Consensus[C]//IEEE INFOCOM 2023-IEEE Conference on Computer Communications.2023:1-10. [12]YU B,ZHAO H,ZHOU T,et al.OverShard:Scaling blockchain by full sharding with overlapping network and virtual accounts [J].Journal of Network and Computer Applications,2023,220:103748. [13]LIU Y,LIU J,VAZ SALLES M A,et al.Building blocks of sharding blockchain systems:Concepts,approaches,and open problems[J].Computer Science Review,2022,46:100513. [14]MU K,WEI X.EfShard:Toward Efficient State Sharding Blockchain via Flexible and Timely State Allocation[J].IEEE Tran-sactions on Network and Service Management,2023,20(3):2817-2829. [15]LI M,LUO X,XUE K,et al.A Secure and Efficient Blockchain Sharding Scheme via Hybrid Consensus and Dynamic Management[J].IEEE Transactions on Information Forensics and Security,2024,19:5911-5924. [16]LUU L,NARAYANAN V,ZHENG C,et al.A Secure Sharding Protocol For Open Blockchains[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.New York,NY,USA:Association for Computing Machinery,2016:17-30. [17]GADIRAJU D S,LALITHA V,AGGARWAL V.An Optimization Framework Based on Deep Reinforcement Learning Approaches for Prism Blockchain[J].IEEE Transactions on Ser-vices Computing,2023,16(4):2451-2461. [18]KOKORIS-KOGIAS E,JOVANOVIC P,GASSER L,et al.OmniLedger:A Secure,Scale-Out,Decentralized Ledger via Sharding[C]//2018 IEEE Symposium on Security and Privacy(SP).2018:583-598. [19]ZHANG J,HONG Z,QIU X,et al.SkyChain:A Deep Reinforcement Learning-Empowered Dynamic Blockchain Sharding System[C]//Proc of the 49th International Conference on Pa-rallel Processing.New York,NY,USA:Association for Computing Machinery,2020:1-11. [20]ZHOU K,ZHANG X,WANG C,et al.Accelerating Cross-Shard Blockchain Consensus via Decentralized Coordinators Service With Verifiable Global States[J].IEEE Transactions on Ser-vices Computing,2024,17(4):1340-1353. |
[1] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[2] | HUO Xingpeng, SHA Letian, LIU Jianwen, WU Shang, SU Ziyue. Windows Domain Penetration Testing Attack Path Generation Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(3): 400-406. |
[3] | XU Donghong, LI Bin, QI Yong. Task Scheduling Strategy Based on Improved A2C Algorithm for Cloud Data Center [J]. Computer Science, 2025, 52(2): 310-322. |
[4] | WANG Tianjiu, LIU Quan, WU Lan. Offline Reinforcement Learning Algorithm for Conservative Q-learning Based on Uncertainty Weight [J]. Computer Science, 2024, 51(9): 265-272. |
[5] | ZHOU Wenhui, PENG Qinghua, XIE Lei. Study on Adaptive Cloud-Edge Collaborative Scheduling Methods for Multi-object State Perception [J]. Computer Science, 2024, 51(9): 319-330. |
[6] | WANG Dong, LI Xiaoruo, ZHU Bingnan. Transaction Granularity Modifiable Consortium Blockchain Scheme Based on Dual Merkel Trees Block Structure [J]. Computer Science, 2024, 51(9): 408-415. |
[7] | ZANG Wenyang, LYU Jinlai. Study on Time Rotation Notary Group Model Based on Threshold Signature [J]. Computer Science, 2024, 51(8): 403-411. |
[8] | XIANG Yanjie, HUANG Xiaofang, XIANG Kefeng, ZHENG Ji’nan. Blockchain Certificateless Encryption Mechanism Based on National Secret Algorithm [J]. Computer Science, 2024, 51(8): 440-446. |
[9] | SUN Li. Application,Challenge and New Strategy of Block Chain Technology in Metaverse [J]. Computer Science, 2024, 51(7): 373-379. |
[10] | LI Zhiyuan, XU Binglei, ZHOU Yingyi. Blockchain Anonymous Transaction Tracking Method Based on Node Influence [J]. Computer Science, 2024, 51(7): 422-429. |
[11] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[12] | LI Danyang, WU Liangji, LIU Hui, JIANG Jingqing. Deep Reinforcement Learning Based Thermal Awareness Energy Consumption OptimizationMethod for Data Centers [J]. Computer Science, 2024, 51(6A): 230500109-8. |
[13] | WANG Shuanqi, ZHAO Jianxin, LIU Chi, WU Wei, LIU Zhao. Fuzz Testing Method of Binary Code Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(6A): 230800078-7. |
[14] | ZHU Jun, ZHANG Guoyin, WAN Jingjing. Study on Data Security Framework Based on Identity and Blockchain Integration [J]. Computer Science, 2024, 51(6A): 230400056-5. |
[15] | LAN Yajie, MA Ziqiang, CHEN Jiali, MIAO Li, XU Xin. Survey on Application of Searchable Attribute-based Encryption Technology Based on Blockchain [J]. Computer Science, 2024, 51(6A): 230800016-14. |
|