Computer Science ›› 2025, Vol. 52 ›› Issue (3): 180-187.doi: 10.11896/jsjkx.231200138
• Database & Big Data & Data Science • Previous Articles Next Articles
YANG Yingxiu1, CHEN Hongmei1,2, ZHOU Lihua1,2 , XIAO Qing1
CLC Number:
| [1]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2017:135-144. [2]WANG X,JI H,SHI C,et al.Heterogeneous graph attentionnetwork[C]//The World Wide Web Conference.2019:2022-2032. [3]FU X,ZHANG J,MENG Z,et al.Magnn:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of The Web Conference 2020.2020:2331-2341. [4]GOLDBERG Y,LEVY O.word2vec Explained:deriving Mikolov et al.’s negative-sampling word-embedding method[J].arXiv:1402.3722,2014. [5]ZHANG D,YIN J,ZHU X,et al.Metagraph2vec:Complex semantic path augmented heterogeneous network embedding[C]//Advances in Knowledge Discovery and Data Mining:22nd Pacific-Asia Conference,PAKDD 2018.Melbourne,VIC,Australia,June 3-6,2018,Proceedings,Part II 22:Springer International Publishing,2018:196-208. [6]HE Y,SONG Y,LI J,et al.Hetespaceywalk:A heterogeneousspacey random walk for heterogeneous information network embedding[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:639-648. [7]CHEN H,YIN H,WANG W,et al.PME:projected metric embedding on heterogeneous networks for link prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1177-1186. [8]GUI H,LIU J,TAO F,et al.Large-scale embedding learning in heterogeneous event data[C]//2016 IEEE 16th International Conference on Data Mining(ICDM).IEEE,2016:907-912. [9]SHI C,LU Y,HU L,et al.RHINE:Relation structure-awareheterogeneous information network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(1):433-447. [10]WANG X,LU Y,SHI C,et al.Dynamic heterogeneous information network embedding with meta-path based proximity[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(3):1117-1132. [11]AL-FURAS A T,ALRAHMAWY M F,AL-ADROUSY W M,et al.Deep Attributed Network Embedding via Weisfeiler-Lehman and Autoencoder[J].IEEE Access,2022,10:61342-61353. [12]CHANG S,HAN W,TANG J,et al.Heterogeneous networkembedding via deep architectures[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining,2015:119-128. [13]YUN S,JEONG M,YOO S,et al.Graph Transformer Net-works:Learning meta-path graphs to improve GNNs[J].Neural Networks,2022,153:104-119. [14]TU K,CUI P,WANG X,et al.Structural deep embedding for hyper-networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [15]CHANG Y,CHEN C,HU W,et al.Megnn:Meta-path extracted graph neural network for heterogeneous graph representation learning[J].Knowledge-Based Systems.2022,235:107611. [16]LV Q,DING M,LIU Q,et al.Are we really making much progress? revisiting,benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:1150-1160. [17]CEN Y,ZOU X,ZHANG J,et al.Representation learning forattributed multiplex heterogeneous network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.2019:1358-1368. [18]LI G,MÜLLER M,GHANEM B,et al.Training graph neuralnetworks with 1000 layers[C]//International Conference on Machine Learning.PMLR,2021:6437-6449. [19]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//The Semantic Web:15th International Conference,ESWC 2018,Heraklion,Crete,Greece,June 3-7,2018,Proceedings 15.Springer,2018:593-607. [20]YUN S,JEONG M,KIM R,et al.Graph transformer networks[J].Advances in Neural Information Processing Systems,2019,32:11983-11993. [21]YANG C,XIAO Y,ZHANG Y,et al.Heterogeneous network representation learning:A unified framework with survey and benchmark[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(10):4854-4873. [22]VELIČKOVIC' P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [23]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [24]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [25]JIN D,HUO C,LIANG C,et al.Heterogeneous graph neuralnetwork via attribute completion[C]//Proceedings of the Web Conference 2021.2021:391-400. [26]HU Z,DONG Y,WANG K,et al.Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020.2020:2704-2710. |
| [1] | CHEN Qian, CHENG Kaixuan, GUO Xin, ZHANG Xiaoxia, WANG Suge, LI Yanhong. Bidirectional Prompt-Tuning for Event Argument Extraction with Topic and Entity Embeddings [J]. Computer Science, 2026, 53(1): 278-284. |
| [2] | HUANG Miaomiao, WANG Huiying, WANG Meixia, WANG Yejiang , ZHAO Yuhai. Review of Graph Embedding Learning Research:From Simple Graph to Complex Graph [J]. Computer Science, 2026, 53(1): 58-76. |
| [3] | LIU Hongjian, ZOU Danping, LI Ping. Pedestrian Trajectory Prediction Method Based on Graph Attention Interaction [J]. Computer Science, 2026, 53(1): 97-103. |
| [4] | LI Shunyong, ZHENG Mengjiao, LI Jiaming, ZHAO Xingwang. Joint Spectrum Embedding Clustering Algorithm Based on Multi-view Diversity Learning [J]. Computer Science, 2026, 53(1): 104-114. |
| [5] | KALZANG Gyatso, NYIMA Tashi, QUN Nuo, GAMA Tashi, DORJE Tashi, LOBSANG Yeshi, LHAMO Kyi, ZOM Kyi. Data Augmentation Methods for Tibetan-Chinese Machine Translation Based on Long-tail Words [J]. Computer Science, 2026, 53(1): 224-230. |
| [6] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [7] | WU Hanyu, LIU Tianci, JIAO Tuocheng, CHE Chao. DHMP:Dynamic Hypergraph-enhanced Medication-aware Model for Temporal Health EventPrediction [J]. Computer Science, 2025, 52(9): 88-95. |
| [8] | ZHOU Tao, DU Yongping, XIE Runfeng, HAN Honggui. Vulnerability Detection Method Based on Deep Fusion of Multi-dimensional Features from Heterogeneous Contract Graphs [J]. Computer Science, 2025, 52(9): 368-375. |
| [9] | SU Shiyu, YU Jiong, LI Shu, JIU Shicheng. Cross-domain Graph Anomaly Detection Via Dual Classification and Reconstruction [J]. Computer Science, 2025, 52(8): 374-384. |
| [10] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [11] | YANG Jian, SUN Liu, ZHANG Lifang. Survey on Data Processing and Data Augmentation in Low-resource Language Automatic Speech Recognition [J]. Computer Science, 2025, 52(8): 86-99. |
| [12] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [13] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
| [14] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [15] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
|
||