Computer Science ›› 2025, Vol. 52 ›› Issue (3): 180-187.doi: 10.11896/jsjkx.231200138
• Database & Big Data & Data Science • Previous Articles Next Articles
YANG Yingxiu1, CHEN Hongmei1,2, ZHOU Lihua1,2 , XIAO Qing1
CLC Number:
[1]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2017:135-144. [2]WANG X,JI H,SHI C,et al.Heterogeneous graph attentionnetwork[C]//The World Wide Web Conference.2019:2022-2032. [3]FU X,ZHANG J,MENG Z,et al.Magnn:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of The Web Conference 2020.2020:2331-2341. [4]GOLDBERG Y,LEVY O.word2vec Explained:deriving Mikolov et al.’s negative-sampling word-embedding method[J].arXiv:1402.3722,2014. [5]ZHANG D,YIN J,ZHU X,et al.Metagraph2vec:Complex semantic path augmented heterogeneous network embedding[C]//Advances in Knowledge Discovery and Data Mining:22nd Pacific-Asia Conference,PAKDD 2018.Melbourne,VIC,Australia,June 3-6,2018,Proceedings,Part II 22:Springer International Publishing,2018:196-208. [6]HE Y,SONG Y,LI J,et al.Hetespaceywalk:A heterogeneousspacey random walk for heterogeneous information network embedding[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:639-648. [7]CHEN H,YIN H,WANG W,et al.PME:projected metric embedding on heterogeneous networks for link prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1177-1186. [8]GUI H,LIU J,TAO F,et al.Large-scale embedding learning in heterogeneous event data[C]//2016 IEEE 16th International Conference on Data Mining(ICDM).IEEE,2016:907-912. [9]SHI C,LU Y,HU L,et al.RHINE:Relation structure-awareheterogeneous information network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(1):433-447. [10]WANG X,LU Y,SHI C,et al.Dynamic heterogeneous information network embedding with meta-path based proximity[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(3):1117-1132. [11]AL-FURAS A T,ALRAHMAWY M F,AL-ADROUSY W M,et al.Deep Attributed Network Embedding via Weisfeiler-Lehman and Autoencoder[J].IEEE Access,2022,10:61342-61353. [12]CHANG S,HAN W,TANG J,et al.Heterogeneous networkembedding via deep architectures[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining,2015:119-128. [13]YUN S,JEONG M,YOO S,et al.Graph Transformer Net-works:Learning meta-path graphs to improve GNNs[J].Neural Networks,2022,153:104-119. [14]TU K,CUI P,WANG X,et al.Structural deep embedding for hyper-networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [15]CHANG Y,CHEN C,HU W,et al.Megnn:Meta-path extracted graph neural network for heterogeneous graph representation learning[J].Knowledge-Based Systems.2022,235:107611. [16]LV Q,DING M,LIU Q,et al.Are we really making much progress? revisiting,benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:1150-1160. [17]CEN Y,ZOU X,ZHANG J,et al.Representation learning forattributed multiplex heterogeneous network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.2019:1358-1368. [18]LI G,MÜLLER M,GHANEM B,et al.Training graph neuralnetworks with 1000 layers[C]//International Conference on Machine Learning.PMLR,2021:6437-6449. [19]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//The Semantic Web:15th International Conference,ESWC 2018,Heraklion,Crete,Greece,June 3-7,2018,Proceedings 15.Springer,2018:593-607. [20]YUN S,JEONG M,KIM R,et al.Graph transformer networks[J].Advances in Neural Information Processing Systems,2019,32:11983-11993. [21]YANG C,XIAO Y,ZHANG Y,et al.Heterogeneous network representation learning:A unified framework with survey and benchmark[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(10):4854-4873. [22]VELIČKOVIC' P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [23]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [24]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [25]JIN D,HUO C,LIANG C,et al.Heterogeneous graph neuralnetwork via attribute completion[C]//Proceedings of the Web Conference 2021.2021:391-400. [26]HU Z,DONG Y,WANG K,et al.Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020.2020:2704-2710. |
[1] | XIE Peizhong, LI Guanjin, LI Ting. Knowledge Tracing Model Based on Exercise-Knowledge Point Heterogeneous Graph andMulti-feature Fusion [J]. Computer Science, 2025, 52(3): 197-205. |
[2] | LI Shao, JIANG Fangting, YANG Xinyan, LIANG Gang. Rumor Detection on Potential Hot Topics with Bi-directional Graph Attention Network [J]. Computer Science, 2025, 52(3): 277-286. |
[3] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[4] | HU Haifeng, ZHU Yiwen, ZHAO Haitao. Network Slicing End-to-end Latency Prediction Based on Heterogeneous Graph Neural Network [J]. Computer Science, 2025, 52(3): 349-358. |
[5] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[6] | ZHENG Wenping, HAN Yiheng, LIU Meilin. Node Classification Algorithm Fusing High-order Group Structure Information [J]. Computer Science, 2025, 52(2): 107-115. |
[7] | MENG Lingjun, CHEN Hongchang, WANG Gengrun. Social Bots Detection Based on Multi-relationship Graph Attention Network [J]. Computer Science, 2025, 52(1): 298-306. |
[8] | WANG Xin, XIONG Shubo, SUN Lingyun. Federated Graph Learning:Problems,Methods and Challenges [J]. Computer Science, 2025, 52(1): 362-373. |
[9] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[10] | CHEN Liang, SUN Cong. Deep-learning Based DKOM Attack Detection for Linux System [J]. Computer Science, 2024, 51(9): 383-392. |
[11] | LIU Yulu, WU Shuhong, YU Dan, MA Yao, CHEN Yongle. Cross-age Identity Membership Inference Based on Attention Feature Decomposition [J]. Computer Science, 2024, 51(9): 401-407. |
[12] | DAI Chaofan, DING Huahua. Domain-adaptive Entity Resolution Algorithm Based on Semi-supervised Learning [J]. Computer Science, 2024, 51(9): 214-222. |
[13] | TANG Ying, WANG Baohui. Study on SSL/TLS Encrypted Malicious Traffic Detection Algorithm Based on Graph Neural Networks [J]. Computer Science, 2024, 51(9): 365-370. |
[14] | CHEN Shanshan, YAO Subin. Study on Recommendation Algorithms Based on Knowledge Graph and Neighbor PerceptionAttention Mechanism [J]. Computer Science, 2024, 51(8): 313-323. |
[15] | YAN Qiuyan, SUN Hao, SI Yuqing, YUAN Guan. Multimodality and Forgetting Mechanisms Model for Knowledge Tracing [J]. Computer Science, 2024, 51(7): 133-139. |
|