Computer Science ›› 2025, Vol. 52 ›› Issue (2): 80-90.doi: 10.11896/jsjkx.240200005
• Database & Big Data & Data Science • Previous Articles Next Articles
YUAN Ye1, CHEN Ming2, WU Anbiao2, WANG Yishu2
CLC Number:
[1]YUAN Y,CHEN L,WANG G.Efficiently answering probability threshold-based shortest path queries over uncertain graphs[C]//Database Systems for Advanced Applications:15th International Conference.2010:155-170. [2]YUAN Y,WANG G,WANG H,et al.Efficient subgraph search over large uncertain graphs[J].Proceedings of the VLDB Endowment,2011,4(11):876-886. [3]YUAN Y,WANG G,CHEN L,et al.Efficient subgraph simila-rity search on large probabilistic graph databases[J].Proceedings of the VLDB Endowment,2012,5(9):800-811. [4]YUAN Y,WANG G,CHEN L,et al.Efficient keyword search on uncertain graph data[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(12):2767-2779. [5]HU B,ZHANG Z,SHI C,et al.Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:946-953. [6]WU Y,LIAN D,XU Y,et al.Graph convolutional networkswith markov random field reasoning for social spammer detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:1054-1061. [7]LI A,QIN Z,LIU R,et al.Spam review detection with graphconvolutional networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:2703-2711. [8]MA X,WU J,XUE S,et al.A comprehensive survey on graphanomaly detection with deep learning[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(12):12012-12038. [9]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [10]PEROZZI B,AKOGLU L.Scalable anomaly ranking of attributed neighborhoods[C]//Proceedings of the 2016 SIAM International Conference on Data Mining,Society for Industrial and Applied Mathematics.2016:207-215. [11]LIU N,HUANG X,HU X.Accelerated Local Anomaly Detection via Resolving Attributed Networks[C]//IJCAI.2017:2337-2343. [12]LI J,DANI H,HU X,et al.Radar:Residual Analysis for Ano-maly Detection in Attributed Networks[C]//IJCAI.2017:2152-2158. [13]PENG Z,LUO M,LI J,et al.ANOMALOUS:A Joint Modeling Approach for Anomaly Detection on Attributed Networks[C]//IJCAI,2018:3513-3519. [14]DING K,LI J,BHANUSHALI R,et al.Deep anomaly detection on attributed networks[C]//Proceedings of the 2019 SIAM International Conference on Data Mining,Society for Industrial and Applied Mathematics.2019:594-602. [15]FAN H,ZHANG F,LI Z.Anomalydae:Dual autoencoder foranomaly detection on attributed networks[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2020:5685-5689. [16]BANDYOPADHYAY S,VIVEK S V,MURTY M N.Outlierresistant unsupervised deep architectures for attributed network embedding[C]//Proceedings of the 13th International Confe-rence on Web Search and Data Mining.2020:25-33. [17]PEI Y,HUANG T,VAN IPENBURG W,et al.ResGCN:attention-based deep residual modeling for anomaly detection on attributed networks[C]//2021 IEEE 8th International Conference on Data Science and Advanced Analytics(DSAA).2021:1-2. [18]LIU Y,LI Z,PAN S,et al.Anomaly detection on attributed networks via contrastive self-supervised learning[J].IEEE Tran-sactions on Neural Networks and Learning Systems,2021,33(6):2378-2392. [19]DUAN J,WANG S,ZHANG P,et al.Graph anomaly detection via multi-scale contrastive learning networks with augmented view[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:7459-7467. [20]VELICKOVIC P,FEDUS W,HAMILTON W L,et al.Deepgraph infomax[J].ICLR(Poster),2019,2(3):4. [21]HASSANI K,KHASAHMADI A H.Contrastive multi-viewrepresentation learning on graphs[C]//International Confe-rence on Machine Learning.2020:4116-4126. [22]YOU Y,CHEN T,SUI Y,et al.Graph contrastive learning with augmentations[J].Advances in Neural Information Processing Systems,2020,33:5812-5823. [23]ZHU Y,XU Y,YU F,et al.Graph contrastive learning withadaptive augmentation[C]//Proceedings of the Web Conference 2021.2021:2069-2080. [24]LI D,WANG W,SHAO M,et al.Contrastive Representation Learning Based on Multiple Node-centered Subgraphs[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management.2023:1338-1347. [25]PAGE L,BRIN S,MOTWANI R,et al.The PageRank citation ranking:Bringing order to the web[R].Stanford Infolab,1999. [26]GASTEIGER J,BOJCHEVSKI A,GÜNNEMANN S.Predictthen propagate:Graph neural networks meet personalized page-rank[J].arXiv:1810.05997,2018. [27]BOJCHEVSKI A,GASTEIGER J,PEROZZI B,et al.Scalinggraph neural networks with approximate pagerank[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:2464-2473. [28]ZHANG M L,ZHOU Z H.ML-KNN:A lazy learning approach to multi-label learning[J].Pattern recognition,2007,40(7):2038-2048. [29]ZHANG S,LI X,ZONG M,et al.Efficient kNN classification with different numbers of nearest neighbors[J].IEEE Transactions on Neural Networks and Learning Systems,2017,29(5):1774-1785. [30]DENG Z,ZHU X,CHENG D,et al.Efficient kNN classification algorithm for big data[J].Neurocomputing,2016,195:143-148. [31]ANDERSEN R,CHUNG F,LANG K.Local graph partitioning using pagerank vectors[C]//2006 47th Annual IEEE Sympo-sium on Foundations of Computer Science(FOCS'06).2006:475-486. [32]TONG H,FALOUTSOS C,PAN J Y.Fast random walk with restart and its applications[C]//Sixth International Conference on Data Mining(ICDM'06).2006:613-622. [33]LIU Y,JIN M,PAN S,et al.Graph self-supervised learning:A survey[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(6):5879-5900. [34]OORD A,LI Y,VINYALS O.Representation learning with contrastive predictive coding[J].arXiv:1807.03748,2018. [35]LI S,AMENTA N.Brute-force k-nearest neighbors search on the GPU[C]//Similarity Search and Applications:8th International Conference.2015:259-270. [36]YANG Z,COHEN W,SALAKHUDINOV R.Revisiting semi-supervised learning with graph embeddings[C]//International Conference on Machine Learning.2016:40-48. [37]GILES C L,BOLLACKER K D,LAWRENCE S.CiteSeer:An automatic citation indexing system[C]//Proceedings of the Third ACM Conference on Digital Libraries.1998:89-98. [38]CANESE K,WEIS S.PubMed:the bibliographic database[J].The NCBI handbook,2013,2(1):1-9. [39]TANG J,ZHANG J,YAO L,et al.Arnetminer:extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2008:990-998. [40]TANG L,LIU H.Relational learning via latent social dimen-sions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2009:817-826. [41]LIU F T,TING K M,ZHOU Z H.Isolation Forest[C]//Proceedings of the 2008 Eighth IEEE International Conference on Data Mining.2008:413-422. |
[1] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[2] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[3] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
[4] | QIAO Yu, XU Tao, ZHANG Ya, WEN Fengpeng, LI Qiangwei. Graph Neural Network Defect Prediction Method Combined with Developer Dependencies [J]. Computer Science, 2025, 52(6): 52-57. |
[5] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
[6] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[7] | HUANG Qian, SU Xinkai, LI Chang, WU Yirui. Hypergraph Convolutional Network with Multi-perspective Topology Refinement forSkeleton-based Action Recognition [J]. Computer Science, 2025, 52(5): 220-226. |
[8] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
[9] | LI Shao, JIANG Fangting, YANG Xinyan, LIANG Gang. Rumor Detection on Potential Hot Topics with Bi-directional Graph Attention Network [J]. Computer Science, 2025, 52(3): 277-286. |
[10] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[11] | HU Haifeng, ZHU Yiwen, ZHAO Haitao. Network Slicing End-to-end Latency Prediction Based on Heterogeneous Graph Neural Network [J]. Computer Science, 2025, 52(3): 349-358. |
[12] | ZHENG Wenping, HAN Yiheng, LIU Meilin. Node Classification Algorithm Fusing High-order Group Structure Information [J]. Computer Science, 2025, 52(2): 107-115. |
[13] | WANG Xin, XIONG Shubo, SUN Lingyun. Federated Graph Learning:Problems,Methods and Challenges [J]. Computer Science, 2025, 52(1): 362-373. |
[14] | TANG Ying, WANG Baohui. Study on SSL/TLS Encrypted Malicious Traffic Detection Algorithm Based on Graph Neural Networks [J]. Computer Science, 2024, 51(9): 365-370. |
[15] | CHEN Liang, SUN Cong. Deep-learning Based DKOM Attack Detection for Linux System [J]. Computer Science, 2024, 51(9): 383-392. |
|