Computer Science ›› 2024, Vol. 51 ›› Issue (6): 186-197.doi: 10.11896/jsjkx.231200175

• Computer Graphics & Multimedia • Previous Articles     Next Articles

Review of Heterogeneous Iris Recognition

KONG Jialin1, ZHANG Qi1, WANG Caiyong2   

  1. 1 School of Information and Cyber Security,People’s Public Security University of China,Beijing 100038,China
    2 School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China
  • Received:2023-12-25 Revised:2024-02-16 Online:2024-06-15 Published:2024-06-05
  • About author:KONG Jialin,born in 2000,M.S.candidate,is a member of CCF(R3399G).Her main research interests include artificial intelligence and biometrics,etc.
    ZHANG Qi,born in 1988,Ph.D,lectu-rer.Her main research interests include biometrics,machine learning,etc.
  • Supported by:
    National Natural Science Foundation of China(61906199,62106015) and Curriculum Construction Project of People’s Public Security University of China(2022KCJS026) .

Abstract: The variations in iris image acquisition environment and devices result in significant disparities in iris registration and recognition samples,which brings challenges to the traditional iris recognition technology.Heterogeneous iris recognition has emerged as a focal point of interest in both academic and industrial domains.This paper classifies and summarizes the existing he-terogeneous iris recognition methods from three perspectives:different levels,sample distinctiveness,and single-source versus multi-source scenarios,and summarizes the latest advancements in heterogeneous iris recognition.Existing heterogeneous iris datasets are reviewed according to the classification of cross-quality,cross-device and cross-spectrum,and the iris recognition evaluation metrics are summarized so that researchers can better evaluate and validate the algorithm performance.Finally,the future development direction of heterogeneous iris recognition is prospected,focusing on three aspects:environmental robustness,modeling of data heterogeneity and multimodal fusion.

Key words: Iris recognition, Heterogeneous images, Biometrics, Deep learning

CLC Number: 

  • TP391.41
[1]LIU J.Robust Recognition of Heterogeneous Iris Images[D].Hefei:University of Science and Technology of China,2014.
[2]TAN C W,KUMAR A.Unified framework for automated irissegmentation using distantly acquired face images[J].IEEE Transactions on Image Processing,2012,21(9):4068-4079.
[3]SHUTLER J.Complex Zernike Moments[EB/OL].https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html.
[4]ARORA S S,VATSA M,SINGH R,et al.On iris camera interoperability[C]//2012 IEEE Fifth International Conference on Biometrics:Theory,Applications and Systems(BTAS).IEEE,2012:346-352.
[5]DESHPANDE A,PATAVARDHAN P P.Super resolution and recognition of long range captured multi-frame iris images[J].IET Biometrics,2017,6(5):360-368.
[6]WILD P,RADU P,FERRYMAN J.On fusion for multispectral iris recognition[C]//International Conference on Biometrics(ICB 2015).IEEE,2015:31-37.
[7]ZHAO Z,KUMAR A.Towards more accurate iris recognition using deeply learned spatially corresponding features[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3809-3818.
[8]LIU S,LIU Y N,ZHU X D,et al.Multi-source feature fusion and entropy feature lightweight neural network for constrained multi-state heterogeneous iris recognition[J].IEEE Access,2020,8:53321-53345.
[9]CHEN Y,ZENG Z,ZENG Y,et al.DenseSENet:more accurate and robust cross-domain iris recognition[J].Journal of Elec-tronic Imaging,2021,30(6):063024.
[10]LIU N,LIU J,SUN Z,et al.A code-level approach to heterogeneous iris recognition[J].IEEE Transactions on Information Forensics and Security,2017,12(10):2373-2386.
[11]XIAO L,SUN Z,TAN T.Fusion of iris and periocular biometrics for cross-sensor identification[C]//Biometric Recognition:7th Chinese Conference,CCBR 2012.Springer Berlin Heidelberg,2012:202-209.
[12]SUN Z,TAN T.Ordinal measures for iris recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,31(12):2211-2226.
[13]CHOUDHARY M,TIWARI V,VENKANNA U.Enhancinghuman iris recognition performance in unconstrained environment using ensemble of convolutional and residual deep neural network models[J].Soft Computing,2020,24(15):11477-11491.
[14]VYAS R,KANUMURI T,SHEORAN G,et al.On Fusion of NIR and VW Information for Cross-Spectral Iris Matching[M]//Machine Learning Algorithms and Applications.Chatterjee,Newark:2021:175-191.
[15]DESHPANDE A,PATAVARDHAN P P,RAO D H.Super-resolution for iris feature extraction[C]//2014 IEEE International Conference on Computational Intelligence and Computing Research.IEEE,2014:1-4.
[16]ALONSO-FERNANDEZ F,FARRUGIA R A,BIGUN J.Eigen-patch iris super-resolution for iris recognition improvement[C]//2015 23rd European Signal Processing Conference(EUSIPCO).IEEE,2015:76-80.
[17]ALONSO-FERNANDEZ F,FARRUGIA R A,BIGUN J.Very low-resolution iris recognition via Eigen-patch super-resolution and matcher fusion[C]//2016 IEEE 8th International Confe-rence on Biometrics Theory,Applications and Systems(BTAS).IEEE,2016:1-8.
[18]PROENÇA H,NEVES J C.IRINA:Iris recognition(even) in inaccurately segmented data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:538-547.
[19]PROENÇA H,NEVES J C.Segmentation-less and non-holistic deep-learning frameworks for iris recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019.
[20]TOIZUMI T,TAKAHASHI K,TSUKADA M.Segmentation-free direct iris localization networks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:991-1000.
[21]OKTIANA M,ARNIA F,AWAY Y,et al.Features for cross spectral image matching:A survey[J].Bulletin of Electrical Engineering and Informatics,2018,7(4):552-560.
[22]NALLA P R,KUMAR A.Toward more accurate iris recognition using cross-spectral matching[J].IEEE Transactions on Image Processing,2016,26(1):208-221.
[23]WANG K,KUMAR A.Cross-spectral iris recognition usingCNN and supervised discrete hashing[J].Pattern Recognition,2019,86:85-98.
[24]OKTIANA M,HORIUCHI T,HIRAI K,et al.Cross-spectraliris recognition using phase-based matching and homomorphic filtering[J].Heliyon,2020,6(2):e03407.
[25]MOSTOFA M,TAHERKHANI F,DAWSON J,et al.Cross-spectral iris matching using conditional coupled GAN[C]//2020 IEEE International Joint Conference on Biometrics(IJCB).IEEE,2020:1-9.
[26]YOU X,ZHAO P,MU X,et al.Heterogeneous noise iris segmentation based on attention mechanism and dense multi-scale features[J].Laser & Optoelectronics Progress,2021,59(4):0410006.
[27]WEI J,WANG Y,LI Y,et al.Cross-spectral iris recognition by learning device-specific band[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(6):3810-3824.
[28]REN J R,SHEN W Z.Optimization Algorithm of Cross Spectral Iris Recognition Based on Dual Attention Mechanism[J].Journal of Computer Engineering & Applications,2023,59(1):187-198.
[29]WEI J,WANG Y,WU X,et al.Cross-sensor iris recognitionusing adversarial strategy and sensor-specific information[C]//IEEE 10th International Conference on Biometrics Theory,Applications and Systems(BTAS 2019).IEEE,2019:1-8.
[30]HUO G,LIN D,YUAN M.Multi-source heterogeneous iris segmentation method based on lightweight convolutional neural network[J].IET Image Processing,2023,17(1):118-131.
[31]国家标准化管理委员会.GB/T 26237.2-2011信息技术生物特征识别数据交换格式第2部分[S].北京:中国标准出版社,2011.
[32]MATEY J R,NARODITSKY O,HANNA K,et al.Iris on the move:Acquisition of images for iris recognition in less constrai-ned environments[J].Proceedings of the IEEE,2006,94(11):1936-1947.
[33]WANG Z,CHEN J,HOI S C H.Deep learning for image super-resolution:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(10):3365-3387.
[34]LIU S,LIU Y N,ZHU X D,et al.Heterogeneous iris one-to-one certification with universal sensors based on quality fuzzy infe-rence and multi-feature fusion lightweight neural network[J].Sensors,2020,20(6):1785.
[35]HUO G,LIN D,YUAN M,et al.Heterogeneous iris segmentation method based on modified U-Net[J].Journal of Electronic Imaging,2021,30(6):063015.
[36]MOSTOFA M,MOHAMADI S,DAWSON J,et al.Deep gan-based cross-spectral cross-resolution iris recognition[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2021,3(4):443-463.
[37]HUO G,ZHANG Q,ZHANG Y,et al.Multi-source heterogene-ous iris recognition using stacked convolutional deep belief networks-deep belief network model[J].Pattern Recognition and Image Analysis,2021,31:81-90.
[38]MENG Y,BAO T.Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach[J].Journal of Imaging,2022,8(9):246.
[39]ZHOU Z,LIU Y,ZHU X,et al.Toward More Accurate Heterogeneous Iris Recognition with Transformers and Capsules[C]//International Conference on Multimedia Modeling.Cham:Springer International Publishing,2023:28-40.
[40]JOHNSON P A,LOPEZ-MEYER P,SAZONOVA N,et al.Quality in face and iris research ensemble(Q-FIRE)[C]//Fourth IEEE International Conference on Biometrics:Theory,Applications and Systems(BTAS 2010).IEEE,2010:1-6.
[41]LIU N,ZHANG M,LI H,et al.DeepIris:Learning pairwise filter bank for heterogeneous iris verification[J].Pattern Recognition Letters,2016,82:154-161.
[42]YADAV D,KOHLI N,DOYLE J S,et al.Unraveling the effect of textured contact lenses on iris recognition[J].IEEE Transactions on Information Forensics and Security,2014,9(5):851-862.
[43]KOHLI N,YADAV D,VATSA M,et al.Revisiting iris recognition with color cosmetic contact lenses[C]//2013 International Conference on Biometrics(ICB).IEEE,2013:1-7.
[44]ND-CrossSensor-Iris-2012 Dataset[DB/OL].https://cvrl.nd.edu/media/django-summernote/2018-09-19/4f89c9f1-fefd-42b1-9289-2dc3f3219659.pdf.
[45]XIAO L,SUN Z,HE R,et al.Coupled feature selection forcross-sensor iris recognition[C]//2013 IEEE Sixth Interna-tional Conference on Biometrics:Theory,Applications and Systems(BTAS).IEEE,2013:1-6.
[46]DE MARSICO M,GALDI C,NAPPI M,et al.Firme:Face andiris recognition for mobile engagement[J].Image and Vision Computing,2014,32(12):1161-1172.
[47]DE MARSICO M,NAPPI M,RICCIO D,et al.Mobile iris challenge evaluation(MICHE)-I,biometric iris dataset and protocols[J].Pattern Recognition Letters,2015,57:17-23.
[48]DE MARSICO M,NAPPI M,NARDUCCI F,et al.Insights into the results of miche i-mobile iris challenge evaluation[J].Pattern Recognition,2018,74:286-304.
[49]SANTOS G,GRANCHO E,BERNARDO M V,et al.Fusing iris and periocular information for cross-sensor recognition[J].Pattern Recognition Letters,2015,57:52-59.
[50]OMELINA L,GOGA J,PAVLOVICOVA J,et al.A survey ofiris datasets[J].Image and Vision Computing,2021,108:104109.
[51]SHARMA A,VERMA S,VATSA M,et al.On cross spectral periocular recognition[C]//2014 IEEE International Conference on Image Processing(ICIP).IEEE,2014:5007-5011.
[52]SEQUEIRA A,CHEN L,WILD P,et al.Cross-eyed-cross-spectral iris/periocular recognition database and competition[C]//2016 International Conference of the Biometrics Special Interest Group(BIOSIG).IEEE,2016:1-5.
[53]KUMAR A,PASSI A.Comparison and combination of irismatchers for reliable personal authentication[J].Pattern recognition,2010,43(3):1016-1026.
[54]BOWYER K W,FLYNN P J.The ND-IRIS-0405 iris imagedataset[J].arXiv:1606.04853,2016.
[55]NOSAKA R,OHKAWA Y,FUKUI K.Feature extractionbased on co-occurrence of adjacent local binary patterns[C]//Advances in Image and Video Technology:5th Pacific Rim Symposium(PSIVT 2011).Gwangju,South Korea,Part II 5.Springer Berlin Heidelberg,2012:82-91.
[56]GRAGNANIELLO D,POGGI G,SANSONE C,et al.An investigation of local descriptors for biometric spoofing detection[J].IEEE Transactions on Information Forensics and Security,2015,10(4):849-863.
[57]WANG Z,LI C,SHAO H,et al.Eye recognition with mixedconvolutional and residual network(MiCoRe-Net)[J].IEEE Access,2018,6:17905-17912.
[58]GANGWAR A,JOSHI A.DeepIrisNet:Deep iris representation with applications in iris recognition and cross-sensor iris recognition[C]//2016 IEEE International Conference on Image Processing(ICIP).IEEE,2016:2301-2305.
[59]PILLAI J K,PUERTAS M,CHELLAPPA R.Cross-sensor iris recognition through kernel learning[J].IEEE transactions on pattern analysis and machine intelligence,2013,36(1):73-85.
[60]WANG K,KUMAR A.Toward more accurate iris recognitionusing dilated residual features[J].IEEE Transactions on Information Forensics and Security,2019,14(12):3233-3245.
[1] LIU Chunling, QI Xuyan, TANG Yonghe, SUN Xuekai, LI Qinghao, ZHANG Yu. Summary of Token-based Source Code Clone Detection Techniques [J]. Computer Science, 2024, 51(6): 12-22.
[2] LI Zekai, BAI Zhengyao, XIAO Xiao, ZHANG Yihan, YOU Yilin. Point Cloud Upsampling Network Incorporating Transformer and Multi-stage Learning Framework [J]. Computer Science, 2024, 51(6): 231-238.
[3] GAO Nan, ZHANG Lei, LIANG Ronghua, CHEN Peng, FU Zheng. Scene Text Detection Algorithm Based on Feature Enhancement [J]. Computer Science, 2024, 51(6): 256-263.
[4] LIU Jiasen, HUANG Jun. Center Point Target Detection Algorithm Based on Improved Swin Transformer [J]. Computer Science, 2024, 51(6): 264-271.
[5] JIANG Rui, YANG Kaihui, WANG Xiaoming, LI Dapeng, XU Youyun. Attentional Interaction-based Deep Learning Model for Chinese Question Answering [J]. Computer Science, 2024, 51(6): 325-330.
[6] BAO Kainan, ZHANG Junbo, SONG Li, LI Tianrui. ST-WaveMLP:Spatio-Temporal Global-aware Network for Traffic Flow Prediction [J]. Computer Science, 2024, 51(5): 27-34.
[7] ZHANG Jianliang, LI Yang, ZHU Qingshan, XUE Hongling, MA Junwei, ZHANG Lixia, BI Sheng. Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer [J]. Computer Science, 2024, 51(5): 62-69.
[8] HE Shiyang, WANG Zhaohui, GONG Shengrong, ZHONG Shan. Cross-modal Information Filtering-based Networks for Visual Question Answering [J]. Computer Science, 2024, 51(5): 85-91.
[9] SONG Jianfeng, ZHANG Wenying, HAN Lu, HU Guozheng, MIAO Qiguang. Multi-stage Intelligent Color Restoration Algorithm for Black-and-White Movies [J]. Computer Science, 2024, 51(5): 92-99.
[10] HE Xiaohui, ZHOU Tao, LI Panle, CHANG Jing, LI Jiamian. Study on Building Extraction from Remote Sensing Image Based on Multi-scale Attention [J]. Computer Science, 2024, 51(5): 134-142.
[11] XU Xuejie, WANG Baohui. Multi-label Patent Classification Based on Text and Historical Data [J]. Computer Science, 2024, 51(5): 172-178.
[12] LI Zichen, YI Xiuwen, CHEN Shun, ZHANG Junbo, LI Tianrui. Government Event Dispatch Approach Based on Deep Multi-view Network [J]. Computer Science, 2024, 51(5): 216-222.
[13] HONG Tijing, LIU Dengfeng, LIU Yian. Radar Active Jamming Recognition Based on Multiscale Fully Convolutional Neural Network and GRU [J]. Computer Science, 2024, 51(5): 306-312.
[14] SUN Jing, WANG Xiaoxia. Convolutional Neural Network Model Compression Method Based on Cloud Edge Collaborative Subclass Distillation [J]. Computer Science, 2024, 51(5): 313-320.
[15] CHEN Runhuan, DAI Hua, ZHENG Guineng, LI Hui , YANG Geng. Urban Electricity Load Forecasting Method Based on Discrepancy Compensation and Short-termSampling Contrastive Loss [J]. Computer Science, 2024, 51(4): 158-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!