Computer Science ›› 2024, Vol. 51 ›› Issue (6): 186-197.doi: 10.11896/jsjkx.231200175
• Computer Graphics & Multimedia • Previous Articles Next Articles
KONG Jialin1, ZHANG Qi1, WANG Caiyong2
CLC Number:
[1]LIU J.Robust Recognition of Heterogeneous Iris Images[D].Hefei:University of Science and Technology of China,2014. [2]TAN C W,KUMAR A.Unified framework for automated irissegmentation using distantly acquired face images[J].IEEE Transactions on Image Processing,2012,21(9):4068-4079. [3]SHUTLER J.Complex Zernike Moments[EB/OL].https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html. [4]ARORA S S,VATSA M,SINGH R,et al.On iris camera interoperability[C]//2012 IEEE Fifth International Conference on Biometrics:Theory,Applications and Systems(BTAS).IEEE,2012:346-352. [5]DESHPANDE A,PATAVARDHAN P P.Super resolution and recognition of long range captured multi-frame iris images[J].IET Biometrics,2017,6(5):360-368. [6]WILD P,RADU P,FERRYMAN J.On fusion for multispectral iris recognition[C]//International Conference on Biometrics(ICB 2015).IEEE,2015:31-37. [7]ZHAO Z,KUMAR A.Towards more accurate iris recognition using deeply learned spatially corresponding features[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3809-3818. [8]LIU S,LIU Y N,ZHU X D,et al.Multi-source feature fusion and entropy feature lightweight neural network for constrained multi-state heterogeneous iris recognition[J].IEEE Access,2020,8:53321-53345. [9]CHEN Y,ZENG Z,ZENG Y,et al.DenseSENet:more accurate and robust cross-domain iris recognition[J].Journal of Elec-tronic Imaging,2021,30(6):063024. [10]LIU N,LIU J,SUN Z,et al.A code-level approach to heterogeneous iris recognition[J].IEEE Transactions on Information Forensics and Security,2017,12(10):2373-2386. [11]XIAO L,SUN Z,TAN T.Fusion of iris and periocular biometrics for cross-sensor identification[C]//Biometric Recognition:7th Chinese Conference,CCBR 2012.Springer Berlin Heidelberg,2012:202-209. [12]SUN Z,TAN T.Ordinal measures for iris recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,31(12):2211-2226. [13]CHOUDHARY M,TIWARI V,VENKANNA U.Enhancinghuman iris recognition performance in unconstrained environment using ensemble of convolutional and residual deep neural network models[J].Soft Computing,2020,24(15):11477-11491. [14]VYAS R,KANUMURI T,SHEORAN G,et al.On Fusion of NIR and VW Information for Cross-Spectral Iris Matching[M]//Machine Learning Algorithms and Applications.Chatterjee,Newark:2021:175-191. [15]DESHPANDE A,PATAVARDHAN P P,RAO D H.Super-resolution for iris feature extraction[C]//2014 IEEE International Conference on Computational Intelligence and Computing Research.IEEE,2014:1-4. [16]ALONSO-FERNANDEZ F,FARRUGIA R A,BIGUN J.Eigen-patch iris super-resolution for iris recognition improvement[C]//2015 23rd European Signal Processing Conference(EUSIPCO).IEEE,2015:76-80. [17]ALONSO-FERNANDEZ F,FARRUGIA R A,BIGUN J.Very low-resolution iris recognition via Eigen-patch super-resolution and matcher fusion[C]//2016 IEEE 8th International Confe-rence on Biometrics Theory,Applications and Systems(BTAS).IEEE,2016:1-8. [18]PROENÇA H,NEVES J C.IRINA:Iris recognition(even) in inaccurately segmented data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:538-547. [19]PROENÇA H,NEVES J C.Segmentation-less and non-holistic deep-learning frameworks for iris recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [20]TOIZUMI T,TAKAHASHI K,TSUKADA M.Segmentation-free direct iris localization networks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:991-1000. [21]OKTIANA M,ARNIA F,AWAY Y,et al.Features for cross spectral image matching:A survey[J].Bulletin of Electrical Engineering and Informatics,2018,7(4):552-560. [22]NALLA P R,KUMAR A.Toward more accurate iris recognition using cross-spectral matching[J].IEEE Transactions on Image Processing,2016,26(1):208-221. [23]WANG K,KUMAR A.Cross-spectral iris recognition usingCNN and supervised discrete hashing[J].Pattern Recognition,2019,86:85-98. [24]OKTIANA M,HORIUCHI T,HIRAI K,et al.Cross-spectraliris recognition using phase-based matching and homomorphic filtering[J].Heliyon,2020,6(2):e03407. [25]MOSTOFA M,TAHERKHANI F,DAWSON J,et al.Cross-spectral iris matching using conditional coupled GAN[C]//2020 IEEE International Joint Conference on Biometrics(IJCB).IEEE,2020:1-9. [26]YOU X,ZHAO P,MU X,et al.Heterogeneous noise iris segmentation based on attention mechanism and dense multi-scale features[J].Laser & Optoelectronics Progress,2021,59(4):0410006. [27]WEI J,WANG Y,LI Y,et al.Cross-spectral iris recognition by learning device-specific band[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(6):3810-3824. [28]REN J R,SHEN W Z.Optimization Algorithm of Cross Spectral Iris Recognition Based on Dual Attention Mechanism[J].Journal of Computer Engineering & Applications,2023,59(1):187-198. [29]WEI J,WANG Y,WU X,et al.Cross-sensor iris recognitionusing adversarial strategy and sensor-specific information[C]//IEEE 10th International Conference on Biometrics Theory,Applications and Systems(BTAS 2019).IEEE,2019:1-8. [30]HUO G,LIN D,YUAN M.Multi-source heterogeneous iris segmentation method based on lightweight convolutional neural network[J].IET Image Processing,2023,17(1):118-131. [31]国家标准化管理委员会.GB/T 26237.2-2011信息技术生物特征识别数据交换格式第2部分[S].北京:中国标准出版社,2011. [32]MATEY J R,NARODITSKY O,HANNA K,et al.Iris on the move:Acquisition of images for iris recognition in less constrai-ned environments[J].Proceedings of the IEEE,2006,94(11):1936-1947. [33]WANG Z,CHEN J,HOI S C H.Deep learning for image super-resolution:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(10):3365-3387. [34]LIU S,LIU Y N,ZHU X D,et al.Heterogeneous iris one-to-one certification with universal sensors based on quality fuzzy infe-rence and multi-feature fusion lightweight neural network[J].Sensors,2020,20(6):1785. [35]HUO G,LIN D,YUAN M,et al.Heterogeneous iris segmentation method based on modified U-Net[J].Journal of Electronic Imaging,2021,30(6):063015. [36]MOSTOFA M,MOHAMADI S,DAWSON J,et al.Deep gan-based cross-spectral cross-resolution iris recognition[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2021,3(4):443-463. [37]HUO G,ZHANG Q,ZHANG Y,et al.Multi-source heterogene-ous iris recognition using stacked convolutional deep belief networks-deep belief network model[J].Pattern Recognition and Image Analysis,2021,31:81-90. [38]MENG Y,BAO T.Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach[J].Journal of Imaging,2022,8(9):246. [39]ZHOU Z,LIU Y,ZHU X,et al.Toward More Accurate Heterogeneous Iris Recognition with Transformers and Capsules[C]//International Conference on Multimedia Modeling.Cham:Springer International Publishing,2023:28-40. [40]JOHNSON P A,LOPEZ-MEYER P,SAZONOVA N,et al.Quality in face and iris research ensemble(Q-FIRE)[C]//Fourth IEEE International Conference on Biometrics:Theory,Applications and Systems(BTAS 2010).IEEE,2010:1-6. [41]LIU N,ZHANG M,LI H,et al.DeepIris:Learning pairwise filter bank for heterogeneous iris verification[J].Pattern Recognition Letters,2016,82:154-161. [42]YADAV D,KOHLI N,DOYLE J S,et al.Unraveling the effect of textured contact lenses on iris recognition[J].IEEE Transactions on Information Forensics and Security,2014,9(5):851-862. [43]KOHLI N,YADAV D,VATSA M,et al.Revisiting iris recognition with color cosmetic contact lenses[C]//2013 International Conference on Biometrics(ICB).IEEE,2013:1-7. [44]ND-CrossSensor-Iris-2012 Dataset[DB/OL].https://cvrl.nd.edu/media/django-summernote/2018-09-19/4f89c9f1-fefd-42b1-9289-2dc3f3219659.pdf. [45]XIAO L,SUN Z,HE R,et al.Coupled feature selection forcross-sensor iris recognition[C]//2013 IEEE Sixth Interna-tional Conference on Biometrics:Theory,Applications and Systems(BTAS).IEEE,2013:1-6. [46]DE MARSICO M,GALDI C,NAPPI M,et al.Firme:Face andiris recognition for mobile engagement[J].Image and Vision Computing,2014,32(12):1161-1172. [47]DE MARSICO M,NAPPI M,RICCIO D,et al.Mobile iris challenge evaluation(MICHE)-I,biometric iris dataset and protocols[J].Pattern Recognition Letters,2015,57:17-23. [48]DE MARSICO M,NAPPI M,NARDUCCI F,et al.Insights into the results of miche i-mobile iris challenge evaluation[J].Pattern Recognition,2018,74:286-304. [49]SANTOS G,GRANCHO E,BERNARDO M V,et al.Fusing iris and periocular information for cross-sensor recognition[J].Pattern Recognition Letters,2015,57:52-59. [50]OMELINA L,GOGA J,PAVLOVICOVA J,et al.A survey ofiris datasets[J].Image and Vision Computing,2021,108:104109. [51]SHARMA A,VERMA S,VATSA M,et al.On cross spectral periocular recognition[C]//2014 IEEE International Conference on Image Processing(ICIP).IEEE,2014:5007-5011. [52]SEQUEIRA A,CHEN L,WILD P,et al.Cross-eyed-cross-spectral iris/periocular recognition database and competition[C]//2016 International Conference of the Biometrics Special Interest Group(BIOSIG).IEEE,2016:1-5. [53]KUMAR A,PASSI A.Comparison and combination of irismatchers for reliable personal authentication[J].Pattern recognition,2010,43(3):1016-1026. [54]BOWYER K W,FLYNN P J.The ND-IRIS-0405 iris imagedataset[J].arXiv:1606.04853,2016. [55]NOSAKA R,OHKAWA Y,FUKUI K.Feature extractionbased on co-occurrence of adjacent local binary patterns[C]//Advances in Image and Video Technology:5th Pacific Rim Symposium(PSIVT 2011).Gwangju,South Korea,Part II 5.Springer Berlin Heidelberg,2012:82-91. [56]GRAGNANIELLO D,POGGI G,SANSONE C,et al.An investigation of local descriptors for biometric spoofing detection[J].IEEE Transactions on Information Forensics and Security,2015,10(4):849-863. [57]WANG Z,LI C,SHAO H,et al.Eye recognition with mixedconvolutional and residual network(MiCoRe-Net)[J].IEEE Access,2018,6:17905-17912. [58]GANGWAR A,JOSHI A.DeepIrisNet:Deep iris representation with applications in iris recognition and cross-sensor iris recognition[C]//2016 IEEE International Conference on Image Processing(ICIP).IEEE,2016:2301-2305. [59]PILLAI J K,PUERTAS M,CHELLAPPA R.Cross-sensor iris recognition through kernel learning[J].IEEE transactions on pattern analysis and machine intelligence,2013,36(1):73-85. [60]WANG K,KUMAR A.Toward more accurate iris recognitionusing dilated residual features[J].IEEE Transactions on Information Forensics and Security,2019,14(12):3233-3245. |
[1] | LIU Chunling, QI Xuyan, TANG Yonghe, SUN Xuekai, LI Qinghao, ZHANG Yu. Summary of Token-based Source Code Clone Detection Techniques [J]. Computer Science, 2024, 51(6): 12-22. |
[2] | LI Zekai, BAI Zhengyao, XIAO Xiao, ZHANG Yihan, YOU Yilin. Point Cloud Upsampling Network Incorporating Transformer and Multi-stage Learning Framework [J]. Computer Science, 2024, 51(6): 231-238. |
[3] | GAO Nan, ZHANG Lei, LIANG Ronghua, CHEN Peng, FU Zheng. Scene Text Detection Algorithm Based on Feature Enhancement [J]. Computer Science, 2024, 51(6): 256-263. |
[4] | LIU Jiasen, HUANG Jun. Center Point Target Detection Algorithm Based on Improved Swin Transformer [J]. Computer Science, 2024, 51(6): 264-271. |
[5] | JIANG Rui, YANG Kaihui, WANG Xiaoming, LI Dapeng, XU Youyun. Attentional Interaction-based Deep Learning Model for Chinese Question Answering [J]. Computer Science, 2024, 51(6): 325-330. |
[6] | BAO Kainan, ZHANG Junbo, SONG Li, LI Tianrui. ST-WaveMLP:Spatio-Temporal Global-aware Network for Traffic Flow Prediction [J]. Computer Science, 2024, 51(5): 27-34. |
[7] | ZHANG Jianliang, LI Yang, ZHU Qingshan, XUE Hongling, MA Junwei, ZHANG Lixia, BI Sheng. Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer [J]. Computer Science, 2024, 51(5): 62-69. |
[8] | HE Shiyang, WANG Zhaohui, GONG Shengrong, ZHONG Shan. Cross-modal Information Filtering-based Networks for Visual Question Answering [J]. Computer Science, 2024, 51(5): 85-91. |
[9] | SONG Jianfeng, ZHANG Wenying, HAN Lu, HU Guozheng, MIAO Qiguang. Multi-stage Intelligent Color Restoration Algorithm for Black-and-White Movies [J]. Computer Science, 2024, 51(5): 92-99. |
[10] | HE Xiaohui, ZHOU Tao, LI Panle, CHANG Jing, LI Jiamian. Study on Building Extraction from Remote Sensing Image Based on Multi-scale Attention [J]. Computer Science, 2024, 51(5): 134-142. |
[11] | XU Xuejie, WANG Baohui. Multi-label Patent Classification Based on Text and Historical Data [J]. Computer Science, 2024, 51(5): 172-178. |
[12] | LI Zichen, YI Xiuwen, CHEN Shun, ZHANG Junbo, LI Tianrui. Government Event Dispatch Approach Based on Deep Multi-view Network [J]. Computer Science, 2024, 51(5): 216-222. |
[13] | HONG Tijing, LIU Dengfeng, LIU Yian. Radar Active Jamming Recognition Based on Multiscale Fully Convolutional Neural Network and GRU [J]. Computer Science, 2024, 51(5): 306-312. |
[14] | SUN Jing, WANG Xiaoxia. Convolutional Neural Network Model Compression Method Based on Cloud Edge Collaborative Subclass Distillation [J]. Computer Science, 2024, 51(5): 313-320. |
[15] | CHEN Runhuan, DAI Hua, ZHENG Guineng, LI Hui , YANG Geng. Urban Electricity Load Forecasting Method Based on Discrepancy Compensation and Short-termSampling Contrastive Loss [J]. Computer Science, 2024, 51(4): 158-164. |
|