Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230600137-11.doi: 10.11896/jsjkx.230600137
• Artificial Intelligenc • Previous Articles Next Articles
GAO Yang, CAO Yangjie, DUAN Pengsong
CLC Number:
[1]GAO H,TIAN Y L,XU Y,et al.A review of deep learning model compression and acceleration[J].Journal of Software,2021,32(1):68-92. [2]TANG W H,DONG B,CHEN H,et al.A review of deep neural network model compression methods[J].Intelligent IOT Technology,2021,4(6):1-15. [3]GENG L L,NIU B N.A review of deep neural network model compression[J].Computer Science and Exploration,2020,14(9):1441-1455. [4]LANG L,XIA Y Q.A review of research on compact neuralnetwork model design[J].Computer Science and Exploration,2020,14(9):1456-1470. [5]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [6]YANG A,PAN J,LIN J,et al.Chinese CLIP:Contrastive Vi-sion-Language Pretraining in Chinese[J].arXiv:2211.01335,2022. [7]GULATI A,QIN J,CHIU C C,et al.Conformer:Convolution-augmented transformer for speech recognition[J].arXiv:2005.08100,2020. [8]XU J,TAN X,LUO R,et al.NAS-BERT:task-agnostic andadaptive-size BERT compression with neural architecture search[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:1933-1943. [9]LIU Y,ZHANG W,WANG J.Zero-shot adversarial quantiza-tion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:1512-1521. [10]ZHU J,TANG S,CHEN D,et al.Complementary relation con-trastive distillation[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2021:9260-9269. [11]WIMMER P,MEHNERT J,CONDURACHE A.Interspacepruning:Using adaptive filter representations to improve trai-ning of sparse cnns[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2022:12527-12537. [12]HANSON S,PRATT L.Comparing biases for minimal network construction with back-propagation[J].Advances in Neural Information Processing Systems,1988,1:177-185. [13]LECUN Y,DENKER J,SOLLA S.Optimal brain damage[J].Advances in Neural Information Processing Systems,1990,2:598-605. [14]HASSIBI B,STORK D G,WOLFF G J.Optimal brain surgeon and general network pruning[C]//IEEE International Confe-rence on Neural Networks.IEEE,1993:293-299. [15]HAN S,POOL J,TRAN J,et al.Learning both weights and connections for efficient neural networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1.2015:1135-1143. [16]DONG X,CHEN S,PAN S.Learning to prune deep neural networks via layer-wise optimal brain surgeon[C]//Advances in Neural Information Processing Systems.2017:4857-4867. [17]MARIET Z,SRA S.Diversity networks:Neural network compre-ssion using determinantal point processes[J].arXiv:1511.05077,2015. [18]KINGMA D P,SALIMANS T,WELLING M.Variationaldropout and the local reparameterization trick[C]//Advances in Neural Information Processing Systems.2015:2575-2583. [19]MOLCHANOV D,ASHUKHA A,VETROV D.Variationaldropout sparsifies deep neural networks[C]//International Conference on Machine Learning.PMLR,2017:2498-2507. [20]SRINIVAS S,BABUA R V.Data-free parameter pruningfordeep neural networks[J].arXiv:1507.06149,2015. [21]WIMMER P,MEHNERT J,CONDURACHE A.Interspacepruning:Using adaptive filter representations to improve trai-ning of sparse cnns[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2022:12527-12537. [22]ZHUANG L,LI J,SHEN Z,et al.Learning Efficient Convolutional Networks through Network Slimming[C]// 2017 IEEE International Conference on Computer Vision(ICCV).IEEE,2017. [23]GUO Y,YAO A,CHEN Y.Dynamic network surgery for efficient DNNs[C]//Advances in Neural Information Processing Systems.2016:1379-1387. [24]JI L,RAO Y,LU J,et al.Runtime neural pruning[C]// Neural Information Processing Systems.2017. [25]LIU Z,XU J,PENG X,et al.Frequency-domain dynamic pru-ning for convolutional neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:1051-1061. [26]GAO X,ZHAO Y,DUDZIAK L,et al.Dynamic Channel Pru-ning:Feature Boosting and Suppression:,10.48550/arXiv.1810.05331[P].2018. [27]CHEN J,CHEN S,PAN S J.Storage Efficient and DynamicFlexible Runtime Channel Pruning via Deep Reinforcement Learning[C]// Neural Information Processing Systems.2020. [28]LI C,WANG G,WANG B,et al.Dynamic slimmable network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:8607-8617. [29]COURBARIAUX M,BENGIO Y,DAVID J P.Binaryconnect:Training deep neural networks with binary weights during propagations[C]//Advances in Neural Information Processing Systems.2015:3123-3131. [30]COURBARIAUX M,HUBARA I,SOUDRY D,et al.Binarized neural networks:Training deep neural networks with weights and activations constrained to+1 or-1[J].arXiv:1602:02830,2016. [31]RASTEGARI M,ORDONEZ V,REDMON J,et al.Xnor-net:Imagenet classification using binary convolutional neural networks[C]//Proc.of the European Conf.on Computer Vision.Cham:Springer-Verlag,2016:525-542. [32]LI F,ZHANG B,LIU B.Ternary weight networks[J].arXiv:1605.04711,2016. [33]ZHU C,HAN S,MAO H,et al.Trained ternary quantization[J].arXiv:1612.01064,2016. [34]ZHOU A,YAO A,GUO Y,et al.Incremental network quantization:Towards lossless cnns with low-precision weights[J].ar-Xiv:1702.03044,2017. [35]FARAONE J,FRASER N,BLOTT M,et al.SYQ:Learningsymmetric quantization for efficient deep neural networks[C]//Proc.of the IEEE Conf.on Computer Vision and Pattern Lopes R G,Fenu S,Starner T.Data-free Knowledge Distillation for Deep Neural Networks[J].arXiv:1710.07535,2017. [36]LENG C,DOU Z,LI H,et al.Extremely low bit neural network:Squeeze the last bit out with ADMM[C]//Proc.of the 32nd AAAI Conf.on Artificial Intelligence.2018. [37]GONG Y,LIU L,YANG M,et al.Compressing deep convolutional networks using vector quantization[J].arXiv:1412.6115,2014. [38]XU Y,WANG Y,ZHOU A,et al.Deep neural network compression with single and multiple level quantization[C]//Proc.of the 32nd AAAI Conf.on Artificial Intelligence.2018. [39]DETTMERS T.8-bit approximations for parallelism in deeplearning[J].arxiv:1511.04561,2015. [40]WANG K,LIU Z,LIN Y,et al.HAQ:Hardware-Aware Automated Quantization With Mixed Precision[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2020. [41]FANG J,SHAFIEE A,ABDEL-AZIZ H,et al.Post-trainingPiecewise Linear Quantization for Deep Neural Networks[C]//Computer Vision-ECCV 2020.Lecture Notes in Computer Science Vol.12347.Cham:Springer,2020. [42]LI Y,DONG X,WANG W.Additive Powers-of-Two Quantization:An Efficient Non-uniform Discretization for Neural Networks[C]// International Conference on Learning Representations.2020. [43]YAMAMOTO K.Learnable Companding Quantization for Accurate Low-bit Neural Networks:,10.48550/arXiv.2103.07156[P].2021. [44]WANG Z,XIAO H,LU J,et al.Generalizable mixed-precisionquantization via attribution rank preservation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:5291-5300. [45]CAI Y,YAO Z,DONG Z,et al.Zeroq:A novel zero shot quantization framework[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2020:13169-13178. [46]ZHONG Y,LIN M,NAN G,et al.Intraq:Learning syntheticimages with intra-class heterogeneity for zero-shot network quantization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:12339-12348. [47]GAO H,TIAN Y L,XU F Y,et al.A review of deep learningmodel compression and acceleration[J].Journal of Software,2021,32(1):68-92. [48]JADERBERG M,VEDALDI A,ZISSERMAN A.Speeding up convolutional neural networks with low rank expansions[J].arXiv:1405.3866,2014. [49]TAI C,XIAO T,ZHANG Y,et al.Convolutional neural networks with low-rank regularization[J].arXiv:1511.06067,2015. [50]SHEN C,XUE M,WANG X,et al.Customizing student net-works from heterogeneous teachers via adaptive knowledge amalgamation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3504-3513. [51]LOPES R G,FENU S,STARNER T.Data-free knowledge distillation for deep neural networks[J].arXiv:1710.07535,2017. [52]YOU S,XU C,XU C,et al.Learning from multiple teacher networks[C]//Proceedings of the 23rd ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining.2017:1285-1294. [53]REN Y,WU J,XIAO X,et al.Online multi-granularity distillation for gan compression[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:6793-6803. [54]ULLRICH K,MEEDS E,WELLING M.Soft weight-sharing for neural network compression[J].arXiv:1702.04008,2017. [55]SONG H,MAO H,DALLY W J.Deep Compression:Com-pressing Deep Neural Networks with Pruning,Trained Quantization and Huffman Coding[C]// ICLR.2016. [56]HAN S,LIU X,MAO H,et al.EIE:Efficient inference engine on compressed deep neural network[J].ACM SIGARCH Computer Architecture News,2016,44(3):243-254. [57]DUBEY A,CHATTERJEE M,AHUJA N.Coreset-based neural network compression[C]//Proc.of the European Conf.on Computer Vision(ECCV).2018:454-470. [58]LOUIZOS C,ULLRICH K,WELLING M.Bayesian compression for deep learning[C]//Advances in Neural Information Processing Systems.2017:3288-3298. [59]JI Y,LIANG L,DENG L,et al.TETRIS:Tile-matching the tremendous irregular sparsity[C]//Advances in Neural Information Processing Systems.2018:4115-4125. [60]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [61]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [62]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremelyefficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [63]MA N,ZHANG X,ZHENGH T,et al.Shufflenet v2:Practical guidelines for efficient cnn architecture design[C]//Procee-dings of the European Conference on Computer Vision(ECCV).2018:116-131. [64]WU B,WAN A,YUE X,et al.Shift:A zero flop,zero parameter alternative to spatial convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:9127-9135. [65]JEON Y,KIM J.Constructing fast network through deconstruction of convolution[C]//32nd Conference on Neural Information Processing Systems(NeurIPS 2018).Neural Information Processing Systems Foundation,2018:5951-5961. [66]LIU H,SIMONYAN K,VINYALS O,et al.Hierarchical representations for efficient architecture search[J].arXiv:1711.00436,2017. |
[1] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[2] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[3] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
[4] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[5] | SUN Jing, WANG Xiaoxia. Convolutional Neural Network Model Compression Method Based on Cloud Edge Collaborative Subclass Distillation [J]. Computer Science, 2024, 51(5): 313-320. |
[6] | LU Min, YUAN Ziting. Graph Contrast Learning Based Multi-graph Neural Network for Session-based RecommendationMethod [J]. Computer Science, 2024, 51(5): 54-61. |
[7] | ZHAO Miao, XIE Liang, LIN Wenjing, XU Haijiao. Deep Reinforcement Learning Portfolio Model Based on Dynamic Selectors [J]. Computer Science, 2024, 51(4): 344-352. |
[8] | WANG Ruiping, WU Shihong, ZHANG Meihang, WANG Xiaoping. Review of Vision-based Neural Network 3D Dynamic Gesture Recognition Methods [J]. Computer Science, 2024, 51(4): 193-208. |
[9] | ZHENG Cheng, SHI Jingwei, WEI Suhua, CHENG Jiaming. Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-basedSentiment Analysis [J]. Computer Science, 2024, 51(3): 205-213. |
[10] | XU Tianyue, LIU Xianhui, ZHAO Weidong. Knowledge Graph and User Interest Based Recommendation Algorithm [J]. Computer Science, 2024, 51(2): 55-62. |
[11] | GUO Yuxing, YAO Kaixuan, WANG Zhiqiang, WEN Liangliang, LIANG Jiye. Black-box Graph Adversarial Attacks Based on Topology and Feature Fusion [J]. Computer Science, 2024, 51(1): 355-362. |
[12] | LIU Yubo, GUO Bin, MA Ke, QIU Chen, LIU Sicong. Design of Visual Context-driven Interactive Bot System [J]. Computer Science, 2023, 50(9): 260-268. |
[13] | ZHU Yuying, GUO Yan, WAN Yizhao, TIAN Kai. New Word Detection Based on Branch Entropy-Segmentation Probability Model [J]. Computer Science, 2023, 50(7): 221-228. |
[14] | HUANG Yujiao, CHEN Mingkai, ZHENG Yuan, FAN Xinggang, XIAO Jie, LONG Haixia. Text Classification Based on Weakened Graph Convolutional Networks [J]. Computer Science, 2023, 50(6A): 220700039-5. |
[15] | LUO Huilan, LONG Jun, LIANG Miaomiao. Attentional Feature Fusion Approach for Siamese Network Based Object Tracking [J]. Computer Science, 2023, 50(6A): 220300237-9. |
|