Computer Science ›› 2025, Vol. 52 ›› Issue (3): 206-213.doi: 10.11896/jsjkx.240100166
• Database & Big Data & Data Science • Previous Articles Next Articles
TIAN Qing1,2,3, KANG Lulu1, ZHOU Liangyu1
CLC Number:
| [1]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [2]CHEN G,CHEN K,ZHANG L,et al.VCANet:Vanishing-point-guided context-aware network for small road object detection[J].Automotive Innovation,2021,4:400-412. [3]XU Y,ZHANG Q,ZHANG J,et al.Vitae:Vision transformer advanced by exploring intrinsic inductive bias[J].Advances in Neural Information Processing Systems,2021,34:28522-28535. [4]ZHENG Z D,YANG Y.Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation[J].International of Computer Vision,2021,129(4):1106-1120. [5]TIAN Q,SUN H,MA C,et al.Heterogeneous domain adaptation with structure and classification space alignment[J].IEEE Transactions on Cybernetics,2021,52(10):10328-10338. [6]HOFFMAN J,TZENG E,PARK T,et al.Cycada:Cycle-consistent adversarial domain adaptation[C]//International Confe-rence on Machine Learning.2018:1989-1998. [7]ZHOU K B,TENG L Y,ZHANG W,et al.Discriminative label semantic guidance learning for domain adaptive retrieval[J].Journal of Chinese Computer Systems,2024,45(7):1639-1647. [8]DU Z,LI J,SU H,et al.Cross-domain gradient discrepancy mi-nimization for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3937-3946. [9]PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2010,22(2):199-210. [10]LONG M,CAO Z,WANG J,et al.Conditional adversarial do-main adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing System.2018:1647-1657. [11]BOUSMALIS K,SILBERMAN N,DOHAN D,et al.Unsupervised pixel-level domain adaptation with generative adversarial networks[C]//Proceedings of the IEEE Conference on Compu-ter Vision and Pattern Recognition.2017:3722-3731. [12]LONG M,CAO Y,Wang J,et al.Learning transferable features with deep adaptation networks[C]//International Conference on Machine Learning.2015:97-105. [13]LIANG J,HU D,FENG J.Do we really need to access thesource data? source hypothesis transfer for unsupervised domain adaptation[C]//International Conference on Machine Learning.2020:6028-6039. [14]ZHANG Z,CHEN W,CHENG H,et al.Divide and contrast:Source-free domain adaptation via adaptive contrastive learning[J].Advances in Neural Information Processing Systems,2022,35:5137-5149. [15]DING N,XU Y,TANG Y,et al.Source-free domain adaptation via distribution estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7212-7222. [16]LIANG J,HU D,WANG Y,et al.Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(11):8602-8617. [17]CHU T,LIU Y,DENG J,et al.Denoised Maximum Classifier Discrepancy for Source-Free Unsupervised Domain Adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:3472-3480. [18]JING M M,LI J J,LU K,et al.Visually source-free domain ada-ptation via adversarial style matching[J].IEEE Transactions on Image Processing,2024,33:1032-1044. [19]BELOUADAH E,POPESCU A,KANELLOS I.A comprehensive study of class incremental learning algorithms for visual tasks[J].Neural Networks,2021,135:38-54. [20]MASANA M,LIU X,TWARDOWSKI B,et al.Class-incremental learning:Survey and performance evaluation on image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5513-5533. [21]ZHAO B,XIAO X,GAN G J,et al.Maintaining discrimination and fairness in class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:13208-13217. [22]HU X,TANG K,MIAO C,et al.Distilling causal effect of data in class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3957-3966. [23]LIU Y,SCHIELE B,SUN Q.Rmm:Reinforced memory ma-nagement for class-incremental learning[J].Advances in Neural Information Processing Systems,2021,34:3478-3490. [24]BELOUADAH E,POPESCU A.IL2m:Class incremental lear-ning with dual memory[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:583-592. [25]LIU X,WU C,MENTA M,et al.Generative feature replay for class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:226-227. [26]YANG S,WANG Y,et al.Generalized source-free domain adaptation[C]//Proceedings of the IEEE/CVF International Confe-rence on Computer Vision.2021:8978-8987. [27]YANG S,WANG Y X,et al.Exploiting the intrinsic neighborhood structure for source-free domain adaptation[J].Advances in Neural Information Processing Systems,2021,34:29393-29405. [28]WANG F,HAN Z,GONG Y,et al.Exploring domain-invariant parameters for source free domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7151-7160. [29]TIAN J,ZHANG J,LI W,et al.VDM-DA:Virtual domain mo-deling for source data-free domain adaptation[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(6):3749-3760. [30]CHEN D,WANG D,DARREEL T,et al.Contrastive test-time adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:295-305. [31]WANG R,WU Z,WENG Z,et al.Cross-domain contrastivelearning for unsupervised domain adaptation[J].IEEE Transactions on Multimedia,2022,25:1665-1673. [32]TIAN Q,PENG S,MA T.Source-free unsupervised domainadaptation with trusted pseudo samples[J].ACM Transactions on Intelligent Systems and Technology,2023,14(2):1-17. [33]CAO Z,LONG M,WANG J,et al.Partial transfer learning with selective adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2724-2732. [34]TIAN Q,CHU Y,SUN H Y,et al.Survey on Partial Domain Adaptation[J].Journal of Software,2023,34(12):5597-5613. [35]CAO Z,MA L,LONG M,et al.Partial adversarial domain adaptation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:135-150. [36]SAHOO A,PANDA R,FERIS R,et al.Select,label,and mix:Learning discriminative invariant feature representations for partial domain adaptation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:4210-4219. [37]KUNDU J N,VENKATESH R M,VENKAT N,et al.Class-incremental domain adaptation[C]//European Conference on Computer Vision.2020:53-69. [38]LIN H,ZHANG Y,QIU Z,et al.Prototype-guided continualadaptation for class-incremental unsupervised domain adaptation[C]//European Conference on Computer Vision.2022:351-368. [39]SAENLO K,KULIS B,FRITZ M,et al.Adapting visual category models to new domains[C]//Proceedings of European Conference on Computer Vision.Springer,2010:213-226. [40]TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial dis-criminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7167-7176. [41]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2016,17(1):2096-2030. [42]CAO Z,YOU K,LONG M,et al.Learning to transfer examples for partial domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2985-2994. [43]LIANG J,WANG Y,HU D,et al.A balanced and uncertainty-aware approach for partial domain adaptation[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2020:123-140. |
| [1] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [2] | HUANG Chao, CHENG Chunling, WANG Youkang. Source-free Domain Adaptation Method Based on Pseudo Label Uncertainty Estimation [J]. Computer Science, 2025, 52(9): 212-219. |
| [3] | ZHANG Shiju, GUO Chaoyang, WU Chengliang, WU Lingjun, YANG Fengyu. Text Clustering Approach Based on Key Semantic Driven and Contrastive Learning [J]. Computer Science, 2025, 52(8): 171-179. |
| [4] | ZHANG Taotao, XIE Jun, QIAO Pingjuan. Specific Emitter Identification Based on Progressive Self-training Open Set Domain Adaptation [J]. Computer Science, 2025, 52(7): 279-286. |
| [5] | CHEN Qirui, WANG Baohui, DAI Chencheng. Research on Electrocardiogram Classification and Recognition Algorithm Based on Transfer Learning [J]. Computer Science, 2025, 52(6A): 240900073-8. |
| [6] | LI Mingjie, HU Yi, YI Zhengming. Flame Image Enhancement with Few Samples Based on Style Weight Modulation Technique [J]. Computer Science, 2025, 52(6A): 240500129-7. |
| [7] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
| [8] | YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7. |
| [9] | FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7. |
| [10] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
| [11] | LIU Yufei, XIAO Yanhui, TIAN Huawei. PRNU Fingerprint Purification Algorithm for Open Environment [J]. Computer Science, 2025, 52(6): 187-199. |
| [12] | GONG Zian, GU Zhenghui, CHEN Di. Cross-subject Driver Fatigue Detection Based on Local and Global Feature Integrated Network [J]. Computer Science, 2025, 52(6): 200-210. |
| [13] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
| [14] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
| [15] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
|
||