Computer Science ›› 2025, Vol. 52 ›› Issue (3): 377-384.doi: 10.11896/jsjkx.240300035
• Information Security • Previous Articles Next Articles
XIE Jiachen1, LIU Bo1, LIN Weiwei2 , ZHENG Jianwen1
CLC Number:
[1]WANG C X,YOU X,GAO X,et al.On the road to 6G:Visions,requirements,key technologies and testbeds[J].IEEE Communications Surveys & Tutorials,2023,25(2):905-974. [2]LIM W Y B,LUONG N C,HOANG D T,et al.Federated lear-ning in mobile edge networks:A comprehensive survey[J].IEEE Communications Surveys & Tutorials,2020,22(3):2031-2063. [3]MEHMOOD A,NATGUNANATHAN I,XIANG Y,et al.Protection of big data privacy[J].IEEE Access,2016,4:1821-1834. [4]MCMAHAN B,MOORE E,RAMAGE D,et al.Communication-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [5]WU X,LIANG Z,WANG J.Fedmed:A federated learningframework for language modeling[J].Sensors,2020,20(14):4048-4065. [6]ZHENG Z,ZHOU Y,SUN Y,et al.Applications of federated learning in smart cities:recent advances,taxonomy,and open challenges[J].Connection Science,2022,34(1):1-28. [7]LIU B,LV N,GUO Y,et al.Recent Advances on Federated Learning:A Systematic Survey[EB/OL].(2023-01-03)[2024-04-28].https://arxiv.org/abs/2301.01299. [8]WU L,GUO S,WANG J,et al.On Knowledge Editing in Fede-rated Learning:Perspectives,Challenges,and Future Directions[EB/OL].(2023-06-02)[2024-04-28].https://arxiv.org/abs/2306.01431. [9]HAN Y N,LIU J W,LUO X L.Progress in continuous learning research[J].Computer Research and Development,2022,59(6):1213-1239. [10]HUANG N,LI D D,YAO J,et al.Decentralized federated incremental learning method combined with meta-learning[J].Computer Science,2024,51(3):271-279. [11]PARK T J,KUMATANI K,DIMITRIADIS D.Tackling dy-namics in federated incremental learning with variational embedding rehearsal[J].arXiv:2110.09695,2021. [12]AGGARWAL A,MITTAL M,BATTINENI G.Generative adversarial network:An overview of theory and applications[J].International Journal of Information Management Data Insights,2021,1(1):100004-100013. [13]QI D,ZHAO H,LI S.Better generative replay for continual fe-derated learning[J].arXiv:2302.13001,2023. [14]BABAKNIYA S,FABIAN Z,HE C,et al.A Data-Free Ap-proach to Mitigate Catastrophic Forgetting in Federated Class Incremental Learning for Vision Tasks[J].Advances in Neural Information Processing Systems,2024,36:1-18. [15]PENNISI M,SALANITRI F P,BELLITTO G,et al.Experience Replay as an Effective Strategy f-or Optimizing Decentralized Federated Learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:3376-3383. [16]MORADI R,BERANGI R,MINAEI B.A survey of regularization strategies for deep models[J].Artificial Intelligence Review,2020,53:3947-3986. [17]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the National Academy Sf sciences,2017,114(13):3521-3526. [18]SONG H,LI S Q,WAN F J,et al.Federated learning optimization method in non-independent and identically distributed scenarios [J].Computer Engineering,2024,50(3):166-172. [19]SHENAJ D,TOLDO M,RIGON A,et al.Asynchronous Fede-rated Continual Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5054-5062. [20]YOON J,JEONG W,LEE G,et al.Federated continual learning with weighted inter-client transfer[C]//International Confe-rence on Machine Learning.PMLR,2021:12073-12086. [21]JIANG Z,REN Y,LEI M,et al.Fedspeech:Federated text-to-speech with continual learning[J].arXiv:2110.07216,2021. [22]MUN H,LEE Y.Internet traffic classification with federatedlearning[J].Electronics,2020,10(1):27. [23]JIANG H,He T L,LIU M,et al.High-performance federated continuous learning algorithm for heterogeneous streaming data [J].Journal of Communications,2023,44(5):123-136. [24]MA Y,XIE Z,WANG J,et al.Continual federated learningbased on knowledge distillation[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.2022:2182-2188. [25]HUANG W,YE M,DU B.Learn from others and be yourself in heterogeneous federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10143-10153. [26]CASADO F E,LEMA D,IGLESIAS R,et al.Ensemble and continual federated learning for classification tasks[J].Machine Learning,2023,112:3413-3453. [27]HU K,LU M,LI Y,et al.A Federated Incremental LearningAlgorithm Based on Dual Attention Mechanism[J].Applied Sciences,2022,12(19):10025-10044. [28]DONG J,LIANG W,CONG Y,et al.Heterogeneous forgetting compensation for class-incremental learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:11742-11751. [29]DONG J,ZHANG D,CONG Y,et al.Federated Incremental Semantic Segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:3934-3943. [30]DONG J,WANG L,FANG Z,et al.Federated class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10164-10173. [31]DONG J,LI H,CONG Y,et al.No one left behind:Real-world federated class-incremental learning[J].arXiv:2302.00903,2023. [32]LIU J,ZHAN Y W,ZHANG C Y,et al. Federated Class-Incremental Learning with Prompting[J].arXiv:2310.08948,2023. [33]LIU C,QU X,WANG J,et al.Fedet:a communication-efficient federated class-incremental learning framework based on enhanced transformer[J].arXiv:2306.15347,2023. [34]HALBE S,SMITH J S,TIAN J,et al.HePCo:Data-Free Hete-rogeneous Prompt Consolidation for Continu-al Federated Lear-ning[EB/OL].(2023-06-16)[2024-04-28].https://arxiv.org/abs/2306.09970. [35]HOSPEDALES T,ANTONIOU A,MICAELLI P,et al.Meta-learning in neural networks:A survey[J].IEEE transactions on pattern analysis and machine intelligence,2021,44(9):5149-5169. [36]WEISS K,KHOSHGOFTAAR T M,WANG D D.A survey of transfer learning[J].Journal of Big data,2016,3(1):1-40. [37]JAISWAL A,BABU A R,ZADEH M Z,et al.A survey on con-trastive self-supervised learning[J].Technologies,2020,9(1):2-24. [38]DING J,TRAMEL E,SAHU A K,et al.Federated learningchallenges and opportunities:An outlook[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2022:8752-8756. [39]LUO C Y,CHEN X B,MA C D,et al.Online federated incremental learning algorithm for blockchain [J].Computer Applications,2021,41(2):363-371. [40]DWORK C.Differential privacy:A survey of results[C]//International Conference on Theory and Applications of Models of Computation.Berlin,Heidelberg:Springer Berlin Heidelberg,2008:1-19. [41]ACAR A,AKSU H,ULUAGAC A S,et al.A survey on homomorphic encryption schemes:Theory and implementation[J].ACM Computing Surveys,2018,51(4):1-35. [42]ZHAO C,ZHAO S,ZHAO M,et al.Secure multi-party computation:theory,practice and applications[J].Information Sciences,2019,476:357-372. |
[1] | LUO Zhengquan, WANG Yunlong, WANG Zilei, SUN Zhenan, ZHANG Kunbo. Study on Active Privacy Protection Method in Metaverse Gaze Communication Based on SplitFederated Learning [J]. Computer Science, 2025, 52(3): 95-103. |
[2] | HU Kangqi, MA Wubin, DAI Chaofan, WU Yahui, ZHOU Haohao. Federated Learning Evolutionary Multi-objective Optimization Algorithm Based on Improved NSGA-III [J]. Computer Science, 2025, 52(3): 152-160. |
[3] | WANG Ruicong, BIAN Naizheng, WU Yingjun. FedRCD:A Clustering Federated Learning Algorithm Based on Distribution Extraction andCommunity Detection [J]. Computer Science, 2025, 52(3): 188-196. |
[4] | WANG Dongzhi, LIU Yan, GUO Bin, YU Zhiwen. Edge-side Federated Continuous Learning Method Based on Brain-like Spiking Neural Networks [J]. Computer Science, 2025, 52(3): 326-337. |
[5] | ZHENG Jianwen, LIU Bo, LIN Weiwei, XIE Jiachen. Survey of Communication Efficiency for Federated Learning [J]. Computer Science, 2025, 52(2): 1-7. |
[6] | WANG Xin, XIONG Shubo, SUN Lingyun. Federated Graph Learning:Problems,Methods and Challenges [J]. Computer Science, 2025, 52(1): 362-373. |
[7] | DUN Jingbo, LI Zhuo. Survey on Transmission Optimization Technologies for Federated Large Language Model Training [J]. Computer Science, 2025, 52(1): 42-55. |
[8] | LIU Yuming, DAI Yu, CHEN Gongping. Review of Federated Learning in Medical Image Processing [J]. Computer Science, 2025, 52(1): 183-193. |
[9] | LI Zhi, LIN Sen, ZHANG Qiang. Edge Cloud Computing Approach for Intelligent Fault Detection in Rail Transit [J]. Computer Science, 2024, 51(9): 331-337. |
[10] | ZHOU Tianyang, YANG Lei. Study on Client Selection Strategy and Dataset Partition in Federated Learning Basedon Edge TB [J]. Computer Science, 2024, 51(6A): 230800046-6. |
[11] | ZANG Hongrui, YANG Tingting, LIU Hongbo, MA Kai. Study on Cryptographic Verification of Distributed Federated Learning for Internet of Things [J]. Computer Science, 2024, 51(6A): 230700217-5. |
[12] | ZENG Peiyi. Classification of Multiscale Steel Microstructure Images Based on Incremental Learning [J]. Computer Science, 2024, 51(6A): 230500180-8. |
[13] | SUN Min, DING Xining, CHENG Qian. Federated Learning Scheme Based on Differential Privacy [J]. Computer Science, 2024, 51(6A): 230600211-6. |
[14] | TAN Zhiwen, XU Ruzhi, WANG Naiyu, LUO Dan. Differential Privacy Federated Learning Method Based on Knowledge Distillation [J]. Computer Science, 2024, 51(6A): 230600002-8. |
[15] | LIU Dongqi, ZHANG Qiong, LIANG Haolan, ZHANG Zidong, ZENG Xiangjun. Study on Smart Grid AMI Intrusion Detection Method Based on Federated Learning [J]. Computer Science, 2024, 51(6A): 230700077-8. |
|