Computer Science ›› 2025, Vol. 52 ›› Issue (3): 326-337.doi: 10.11896/jsjkx.240900070
• Computer Network • Previous Articles Next Articles
WANG Dongzhi1, LIU Yan1, GUO Bin1, YU Zhiwen1,2
CLC Number:
| [1]SATYANARAYANAN A,VICTOR BAHL V,CÁCERES R,et al.The Case for VM-based Cloudlets in Mobile Computing[J].IEEE Pervasive Computing,2009,8(4):14-23. [2]ZHOU C X,SUN Y,WANG D G,et al.Survey of federatedlearning research[J].Chinese Journal of Network and Information Security,2021,7(5):77-92. [3]ZHOU Z H.Learnware:on the future of machine learning[J].Frontiers of Computer Science,2016,10(4):589-590. [4]ZHANG Y J,YAN Y H,ZHAO P,et al.Towards enablinglearnware to handle unseen jobs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(12):10964-10972. [5]MCCLOSKEY M,COHEN N J.Catastrophic interference inconnectionist networks:The sequential learning problem[M]//Psychology ofLearning and Motivation.Academic Press,1989,24:109-165. [6]MCCLELLAND J L,MCNAUGHTON B L,O'REILLY R C.Why there are complementary learning systems in the hippocampus and neocortex:insights from the successes and failures of connectionist models of learning and memory[J].Psychological Review,1995,102(3):419. [7]YOON J,JEONG W,LEE G,et al.Federated continual learning with weighted inter-client transfer[C]//International Confe-rence on Machine Learning.PMLR,2021:12073-12086. [8]DONG J H,WANG L X,FANG Z,et al.Federated class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10164-10173. [9]VADERA S,AMEEN S.Methods for Pruning Deep Neural Networks[J].arXiv:2011.00241,2020. [10]MOLCHANOV P,TYREE S,KARRAS T,et al.Pruning Con-volutional Neural Networks for Resource Efficient Transfer Learning[J].arXiv:1611.06440,2016. [11]THAPA C,CHAMIKARA M A P,CAMTEPE S.SplitFed:When Federated Learning Meets Split Learning[J].arXiv:2004.12088,2020. [12]VEPAKOMMA P,RASKAR R.Split Learning:A Resource Efficient Model and Data Parallel Approach for Distributed Deep Learning[M]//Federated Learning.Springer,Cham.2022:439-451. [13]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:In-verted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [14]FANG W.MOBILENET:US13153290[P].[2024-07-30].DOI:US20120309352 A1. [15]IZKIKEVICH M E.Simple model of spiking neurons[J].IEEE Transactions on Neural Networks,2003,14 (6):1569-1572. [16]WANG J Z,KONG L W,HUANG X C,et al.Research review of federated learning algorithms[J].Big Data,2020,6(6):64-82. [17]MCMAHAN H B,MOORE E,RAMAGE D,et al.Communication-efficient learning of deep networks from decentralized data[J].arXiv:1602.05629v3,2017. [18]LI T,SAHU A K,ZAHEER M,et al.Federated optimization in heterogeneous networks[J].Proceedings of Machine Learning and Systems,2020,2:429-450. [19]KARIMIREDDY P S,KALE S,MOHRI M,et al.SCAFFOLD:Stochastic Controlled Averaging for On-Device Federated Lear-ning[J].arXiv:1910.06378v4,2019. [20]SHOHAM N,AVIDOR T,KEREN A,et al.Overcoming forgetting in federated learning on non-iid data[J].arXiv:1910.07796,2019. [21]ZHANG P C,WEI X M,JIN H Y.Dynamic QoS Optimization Method Based on Federal Learning in Mobile Edge Computing[J].Chinese Journal of Computers,2021,44(12):2431-2446. [22]GUO Y T,LIU F,CAI Z P,et al.PREFER:Point-of-interest Recommendation with efficiency and privacy-preservation via Federated Edge leaRning[J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2021,5(1):1-25. [23]FENG J,RONG C,SUN F,et al.PMF:A Privacy-preservingHuman Mobility Prediction Framework via Federated Learning [J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2020,4 (1):1-21. [24]YE D D,YU R,PAN M,et al.Federated learning in vehicular edge computing:A selective model aggregation approach[J].IEEE Access,2020,8:23920-23935. [25]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].PNAS,2017,114(13):3521-3526. [26]YANG C,ZHU M L,LIU Y F,et al.FedPD:Federated Open Set Recognition with Parameter Disentanglement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:4882-4891. [27]MORI J,TERANISHI I,FURUKAWA R.Continual Horizontal Federated Learning for Heterogeneous Data[J].arXiv:2203.02108,2022. [28]PONULAK F,KASINSKI A.Introduction to spiking neuralnetworks:Information processing,learning and applications[J].ActaNeurobiologiae Experimentalis,2011,71(4):409-433. [29]TAHERKHANI A,BELATRECHE A,LI Y,et al.A review of learning in biologically plausible spiking neural networks[J].Neural Networks,2020,122:253-272. [30]ZHANG T L,XU B.Research Advances and Perspectives onSpiking Neural Networks[J].Chinese Journal of Computers,2021,44(9):1767-1785. [31]HEBB D O.The organization of behavior:A neuropsychological theory[M].New York:John Wiley and Sons,1949:62. [32]MARKRAM H,GERSTNER W,SJÖSTRÖM P J.A history of spike-timing-dependent plasticity[J].Frontiers in Synaptic Neuroscience,2011,3:4. [33]SENGUPTA A,YE Y T,WANG R,et al.Going deeper in spiking neural networks:VGG and residual architectures [J].Frontiers in Neuroscience,2019,13:95. [34]WANG Y X,XU Y,YAN R,et al.Deep spiking neural networkswith binary weights for object recognition [J].IEEE Transactions on Cognitive and Developmental Systems,2021,13(3):514-523. [35]HU Y F,TANG H J,PAN G.Spiking deep residual networks[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(8):5200-5205. [36]WU Y J,DENG L,LI G Q,et al.Spatio-temporal backpropagation for training high-performance spiking neural networks [J].Frontiers in Neuroscience,2018,12:331. [37]MOSTAFA H.Supervised learning based on temporal coding inspiking neural networks [J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(7):3227-3235. [38]YANG H,LAM K Y,XIAO L,et al.Lead federated neuromorphic learning for wireless edge artificial intelligence[J].Nature Communications,2022,13(1):4269. [39]SOURES N,HELFER P,DARAM A,et al.Tacos:task agnostic continual learning in spiking neural networks[C]//Theory and Foundation of Continual Learning Workshop at ICML’2021.2021. [40]REBUFFI S A,KOLESNIKOV A,SPERL G,et al.ICARL:Incremental classifier and representation learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2001-2010. [41]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [42]XIAO H,RASUL K,VOLLGRAF R.Fashion-MNIST:A Novel Image Dataset for Benchmarking Machine Learning Algorithms[J].arXiv:1708.07747,2017. |
| [1] | LI Jiahui, LI Yinglong, CHEN Tieming. Privacy-preserving Computation in Edge Service Scenario of Internet of Vehicles:A Review ofTechnical Basis and Research Progress [J]. Computer Science, 2026, 53(1): 298-322. |
| [2] | WU Jiagao, YI Jing, ZHOU Zehui, LIU Linfeng. Personalized Federated Learning Framework for Long-tailed Heterogeneous Data [J]. Computer Science, 2025, 52(9): 232-240. |
| [3] | ZHANG Yuan, ZHANG Shengjie, LIU Lilong, QIAN Shengsheng. Research on Continual Social Event Classification Based on Continual Event Knowledge Network [J]. Computer Science, 2025, 52(8): 268-276. |
| [4] | WANG Xiang, HAN Qinghai, LIANG Jiarui, YU Xiaoli, WU Qi, QING Li. Research on Multi-user Task Offloading and Service Caching Strategies [J]. Computer Science, 2025, 52(7): 307-314. |
| [5] | WANG Chundong, ZHANG Qinghua, FU Haoran. Federated Learning Privacy Protection Method Combining Dataset Distillation [J]. Computer Science, 2025, 52(6A): 240500132-7. |
| [6] | JIANG Yufei, TIAN Yulong, ZHAO Yanchao. Persistent Backdoor Attack for Federated Learning Based on Trigger Differential Optimization [J]. Computer Science, 2025, 52(4): 343-351. |
| [7] | LUO Zhengquan, WANG Yunlong, WANG Zilei, SUN Zhenan, ZHANG Kunbo. Study on Active Privacy Protection Method in Metaverse Gaze Communication Based on SplitFederated Learning [J]. Computer Science, 2025, 52(3): 95-103. |
| [8] | HU Kangqi, MA Wubin, DAI Chaofan, WU Yahui, ZHOU Haohao. Federated Learning Evolutionary Multi-objective Optimization Algorithm Based on Improved NSGA-III [J]. Computer Science, 2025, 52(3): 152-160. |
| [9] | WANG Ruicong, BIAN Naizheng, WU Yingjun. FedRCD:A Clustering Federated Learning Algorithm Based on Distribution Extraction andCommunity Detection [J]. Computer Science, 2025, 52(3): 188-196. |
| [10] | XIE Jiachen, LIU Bo, LIN Weiwei , ZHENG Jianwen. Survey of Federated Incremental Learning [J]. Computer Science, 2025, 52(3): 377-384. |
| [11] | ZHENG Jianwen, LIU Bo, LIN Weiwei, XIE Jiachen. Survey of Communication Efficiency for Federated Learning [J]. Computer Science, 2025, 52(2): 1-7. |
| [12] | WANG Xin, CHEN Kun, SUN Lingyun. Research on Foundation Model Methods for Addressing Non-IID Issues in Federated Learning [J]. Computer Science, 2025, 52(12): 302-313. |
| [13] | PENG Jiao, CHANG Yongjuan, YAN Tao, YOU Zhangzheng, SONG Meina, ZHU Yifan, ZHANG Pengfei, HE Yue, ZHANG Bo, OU Zhonghong. Decentralized Federated Learning Algorithm Sensitive to Delay [J]. Computer Science, 2025, 52(12): 314-320. |
| [14] | DAI Mengxuan, XIA Yunni, MA Yong, MA Yuyin, DONG Yumin, LIU Hui, CHEN Peng, SUN Xiaoning, LONG Tingyan. Service Migration Path Selection Method Based on Interest and Mobility Perception in EdgeComputing Environment [J]. Computer Science, 2025, 52(11A): 250200002-8. |
| [15] | YU Ping, YAN Hui, BAO Jie, GENG Xiaozhong. MEC Network Task Offloading and Migration Strategy Based on Optimization Model [J]. Computer Science, 2025, 52(11A): 241200215-6. |
|
||