Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240300041-8.doi: 10.11896/jsjkx.240300041
• Big Data & Data Science • Previous Articles Next Articles
LYU Jiahao, LIU Jinfeng
CLC Number:
[1]XU H,WANG Y,WU Z,et al.Embedding-based complex feature value coupling learning for detecting outliers in non-iid ca-tegorical data[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:5541-5548. [2]ZHANG Y,KANG B,HOOI B,et al.Deep long-tailed learning:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9):10795-10816. [3]YAO L,CHU Z,LI S,et al.A survey on causal inference[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2021,15(5):1-46. [4]MEINSHAUSEN N.Causality from a distributional robustness point of view[C]//2018 IEEE DataScience Workshop(DSW).IEEE,2018:6-10. [5]REN J,YU C,MA X,et al.Balanced meta-softmax for long-tailed visual recognition[J].Advances in neural information processing systems,2020,33:4175-4186. [6]MENON A K,JAYASUMANA S,RAWAT A S,et al.Long-tail learning via logit adjustment[C]//International Conference on Learning Representations.2020. [7]GU X,GUO Y,LI Z,et al.Tackling long-tailed category distribution under domain shifts[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:727-743. [8]WANG J,LAN C,LIU C,et al.Generalizing to unseen domains:A survey on domain generalization[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(8):8052-8072. [9]ZHOU K,YANG Y,QIAO Y,et al.Mixstyle neural networks for domain generalization and adaptation[J].International Journal of Computer Vision,2024,132(3):822-836. [10]MANCINI M,AKATA Z,RICCI E,et al.Towards recognizing unseen categories in unseen domains[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2020:466-483. [11]LI D,ZHANG J,YANG Y,et al.Episodic training for domain generalization[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1446-1455. [12]SHU Y,CAO Z,WANG C,et al.Open domain generalizationwith domain-augmented meta-learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:9624-9633. [13]KANG B,XIE S,ROHRBACH M,et al.Decoupling Representation and Classifier for Long-Tailed Recognition[C]//International Conference on Learning Representations.2019. [14]CHOU H P,CHANG S C,PAN J Y,et al.Remix:rebalanced mixup[C]//Computer Vision-ECCV 2020 Workshops:Glasgow,UK,Part VI 16.Springer International Publishing,2020:95-110. [15]TAN J,WANG C,LI B,et al.Equalization loss for long-tailed object recognition[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2020:11662-11671. [16]PEARL J.Direct and indirect effects[M]//Probabilistic andcausal inference:the works of Judea Pearl.2022:373-392. [17]LV F,LIANG J,LI S,et al.Causality inspired representationlearning for domain generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:8046-8056. [18]TANG K,HUANG J,ZHANG H.Long-tailed classification by keeping the good and removing the bad momentum causal effect[J].Advances in Neural Information Processing Systems,2020,33:1513-1524. [19]ZHANG X,CUI P,XU R,et al.Deep stable learning for out-of-distribution generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:5372-5382. [20]XU Q,ZHANG R,ZHANG Y,et al.A fourier-based framework for domain generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14383-14392. [21]KUANG K,XIONG R,CUI P,et al.Stable Prediction withModel Misspecification and Agnostic Distribution Shift[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:4485-4492. [22]GRETTON A,FUKUMIZU K,TEO C,et al.A kernel statistical test of independence[C]//Proceedings of the 20th International Conference onNeural Information Processing Systems.2007:585-592. [23]STROBL E V,ZHANG K,VISWESWARAN S.Approximate kernel-based conditional independence tests for fast non-parametric causal discovery[J].Journal of Causal Inference,2019,7(1):20180017. [24]VANDERWEELE T J.A three-way decomposition of a totaleffect into direct,indirect,and interactive effects[J].Epidemio-logy(Cambridge,Mass.),2013,24(2):224. [25]PEARL J,GLYMOUR M,JEWELL N P.Causal inference in statistics:A primer[M].John Wiley & Sons,2016. [26]LECUN Y,CHOPRA S,HADSELL R,et al.A tutorial on energy-based learning[C]//Predicting Structured Data.2006. [27]PEARL J,MACKENZIE D.The book of why:the new science of cause and effect [M]//Basic books,2018. |
[1] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[2] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[3] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[4] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[5] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[6] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[7] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[8] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[9] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[10] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[11] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[12] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
[13] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[14] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[15] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
|