Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240400011-6.doi: 10.11896/jsjkx.240400011
• Big Data & Data Science • Previous Articles Next Articles
LIU Jinxia, ZHANG Xi
CLC Number:
[1]MOHANTY I,GOYAL A,DOTTERWEICH A.Emotions are subtle:Learning sentiment based text representations using contrastive learning[J].arXiv:2112.01054,2021. [2]ZHANG J.S-SimCSE:sampled sub-networks for contrastivelearning of sentence embedding[J].arXiv:2111.11750,2021. [3]RETSINAS G,STAMATOPOULOS N,LOULOUDIS G,et al.Nonlinear manifold embedding on keyword spotting using t-SNE[C]//2017 14th IAPR International Conference on Document Analysis and Recognition(ICDAR).IEEE,2017:487-492. [4]CAI T T,MA R.Theoretical foundations of t-sne for visualizing high-dimensional clustered data[J].The Journal of Machine Learning Research,2022,23(1):13581-13634. [5]WANG Y,HUANG H,RUDIN C,et al.Understanding how dimension reduction tools work:an empirical approach to deciphering t-SNE,UMAP,TriMAP,and PaCMAP for data visualization[J].The Journal of Machine Learning Research,2021,22(1):9129-9201. [6]HAO H B.Disease Knowledge Graph Q&A System Based onSimCSE [J].Computer and Information Technology,2023,31(2):97-100. [7]WU X,GAO C,ZANG L,et al.Esimcse:Enhanced samplebuilding method for contrastive learning of unsupervised sentence embedding[J].arXiv:2109.04380,2021. [8]GAO T,YAO X,CHEN D.Simcse:Simple contrastive learning of sentence embeddings[J].arXiv:2104.08821,2021. [9]CAO R,WANG Y,LIANG Y,et al.Exploring the impact of negative samples of contrastive learning:A case study of sentence embedding[J].arXiv:2202.13093,2022. [10]DENG J,WAN F,YANG T,et al.Clustering-Aware Negative Sampling for Unsupervised Sentence Representation[J].arXiv:2305.09892,2023. [11]GUO J H,YUAN Y C,WANG K J,et al.Unsupervised sentence embedding method based on improved SimCSE [J].Computer Engineering and Design,2023,44(8):2382-2388. [12]ZHANG J,LAN Z,HE J.Contrastive Learning of Sentence Embeddings from Scratch[J].arXiv:2305.15077,2023. [13]HE W H,WU C J,ZHOU S J,et al.Short text clustering research using unsupervised SimCSE fusion [J].Computer Science,2023,50(11):71-76. [14]WANG X H,WANG X,WANG S F,et al.A Disruptive Technology Identification Method Based on SimCSE-LDA and Anomaly Detection:Taking Agricultural Robots as an Example [J].Intelligence Theory and Practice,2023,46(5):135-143. [15]MELIT DEVASSY B,GEORGE S,NUSSBAUM P.Unsuper-vised clustering of hyperspectral paper data using t-SNE[J].Journal of Imaging,2020,6(5):29. [16]HE H,ZHANG J,LAN Z,et al.Instance smoothed contrastive learning for unsupervised sentence embedding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:12863-12871. [17]POLIČAR P G,STRAAR M,ZUPAN B.openTSNE:a modular Python library for t-SNE dimensionality reduction and embedding[J].BioRxiv,2019:731877. [18]GONZÁLEZ-MÁRQUEZ R,BERENS P,KOBAK D.Two-di-mensional visualization of large document libraries using t-SNE[C]//ICLR 2022 Workshop on Geometrical and Topological Representation Learning.2022. [19]ZHOU Y,SHARPEE T O.Using global t-SNE to preserve inter-cluster data structure[J].bioRxiv,2018:331611. [20]DAMRICH S, BÖHM N, HAMPRECHT F A,et al.From t-SNE to UMAP with contrastive learning[C]//The Eleventh International Conference on Learning Representations.2022. [21]CAO Y,WANG L.Automatic selection of t-SNE perplexity[J].arXiv:1708.03229,2017. [22]GARE S,CHEL S,KURUBA M,et al.Dimension reduction and clustering of single cell calcium spiking:comparison of t-SNE and UMAP[C]//2021 National Conference on Communications(NCC).IEEE,2021:1-6. [23]ROBINSON I,PIERCE-HOFFMAN E.Tree-sne:Hierarchicalclustering and visualization using t-sne[J].arXiv:2002.05687,2020. [24]GISBRECHT A,MOKBEL B,HAMMER B.Linear basis-function t-SNE for fast nonlinear dimensionality reduction[C]//The 2012 International Joint Conference on Neural Networks(IJCNN).IEEE,2012:1-8. [25]BAJAL E,KATARA V,BHATIA M,et al.A review of clustering algorithms:comparison of DBSCAN and K-mean with oversampling and t-SNE[J].Recent Patents on Engineering,2022,16(2):17-31. [26]LIU W,SHAO W,XIN Y.Method based on t-sne reduction and K-means clustering to identify the household-transformer relationship in low-voltage distribution network[C]//Second International Conference on Electronic Information Technology(EIT 2023).SPIE,2023:74-79. [27]ZHANG D,LI S W,XIAO W,et al.Pairwise supervised contrastive learning of sentence representations[J].arXiv:2109.05424,2021. [28]LI Z Y.K-SimCSE:Research on Text Retrieval Integrating Domain Knowledge [D].Wuhan:Central China Normal University,2022. [29]AI A W S.Pairwise Supervised Contrastive Learning of Sen-tence Representations[J].arXiv:2109.05424,2021. [30]FEI Y,NIE P,MENG Z,et al.Beyond prompting:Making pre-trained language models better zero-shot learners by clustering representations[J].arXiv:2210.16637,2022. [31]POTRATZ G L,CANCHUMUNI S W A,CASTRO J D B,et al.Automatic lithofacies classification with t-SNE and K-nearest neighbors algorithm[J].Anuário Do Instituto De Geociências,2021,44. |
[1] | ZHOU Yu, YANG Junling, DANG Kelin. Change Detection in SAR Images Based on Evolutionary Multi-objective Clustering [J]. Computer Science, 2024, 51(9): 140-146. |
[2] | LI Zekai, ZHONG Jiaqing, FENG Shaojun, CHEN Juan, DENG Rongyu, XU Tao, TAN Zhengyuan, ZHOU Kexing, ZHU Pengzhi, MA Zhaoyang. CPU Power Modeling Accuracy Improvement Method Based on Training Set Clustering Selection [J]. Computer Science, 2024, 51(9): 59-70. |
[3] | WANG Yiyang, LIU Fagui, PENG Lingxia, ZHONG Guoxiang. Out-of-Distribution Hard Disk Failure Prediction with Affinity Propagation Clustering and Broad Learning Systems [J]. Computer Science, 2024, 51(8): 63-74. |
[4] | WANG Xingeng, DU Tao, ZHOU Jin, CHEN Di, WU Yunzheng. Adaptive Density Peak Clustering Algorithm Based on Shared Nearest Neighbor [J]. Computer Science, 2024, 51(8): 97-105. |
[5] | SUN Haowen, DING Jiaman, LI Bowen, JIA Lianyin. Clustering Algorithm Based on Attribute Similarity and Distributed Structure Connectivity [J]. Computer Science, 2024, 51(7): 124-132. |
[6] | CHEN Jie, JIN Linjiang, ZHENG Hongbo, QIN Xujia. Deep Feature Learning and Feature Clustering of Streamlines in 3D Flow Fields [J]. Computer Science, 2024, 51(7): 221-228. |
[7] | LI Shuai, YU Juan, WU Shaocheng. Cross-lingual Text Topic Discovery Based on Ensemble Learning [J]. Computer Science, 2024, 51(6A): 230300201-8. |
[8] | SU Ruqi, BIAN Xiong, ZHU Songhao. Few-shot Images Classification Based on Clustering Optimization Learning [J]. Computer Science, 2024, 51(6A): 230300227-7. |
[9] | LI Zi, ZHOU Yu. Sequence-based Program Semantic Rule Mining and Violation Detection [J]. Computer Science, 2024, 51(6): 78-84. |
[10] | HE Yifan, HE Yulin, CUI Laizhong, HUANG Zhexue. Subspace-based I-nice Clustering Algorithm [J]. Computer Science, 2024, 51(6): 153-160. |
[11] | ZHANG Zhiyuan, ZHANG Weiyan, SONG Yuqiu, RUAN Tong. Multilingual Event Detection Based on Cross-level and Multi-view Features Fusion [J]. Computer Science, 2024, 51(5): 208-215. |
[12] | CHEN Haoyang, ZHANG Lei. Very Short Texts Hierarchical Classification Combining Semantic Interpretation and DeBERTa [J]. Computer Science, 2024, 51(5): 250-257. |
[13] | KANG Wei, LI Lihui, WEN Yimin. Semi-supervised Classification of Data Stream with Concept Drift Based on Clustering Model Reuse [J]. Computer Science, 2024, 51(4): 124-131. |
[14] | WANG Hancheng, DAI Haipeng, CHEN Zhipeng, CHEN Shusen, CHEN Guihai. Large-scale Network Community Detection Algorithm Based on MapReduce [J]. Computer Science, 2024, 51(4): 11-18. |
[15] | QIAO Fan, WANG Peng, WANG Wei. Multivariate Time Series Classification Algorithm Based on Heterogeneous Feature Fusion [J]. Computer Science, 2024, 51(2): 36-46. |
|